Database-Style Joins

We often need to combine two or more data sets together to provide a complete picture of the topic we are studying. For example, suppose that we have the following two data sets:

julia> using DataFrames

julia> people = DataFrame(ID=[20, 40], Name=["John Doe", "Jane Doe"])
2×2 DataFrame
 Row │ ID     Name
     │ Int64  String
─────┼─────────────────
   1 │    20  John Doe
   2 │    40  Jane Doe

julia> jobs = DataFrame(ID=[20, 40], Job=["Lawyer", "Doctor"])
2×2 DataFrame
 Row │ ID     Job
     │ Int64  String
─────┼───────────────
   1 │    20  Lawyer
   2 │    40  Doctor

We might want to work with a larger data set that contains both the names and jobs for each ID. We can do this using the innerjoin function:

julia> innerjoin(people, jobs, on = :ID)
2×3 DataFrame
 Row │ ID     Name      Job
     │ Int64  String    String
─────┼─────────────────────────
   1 │    20  John Doe  Lawyer
   2 │    40  Jane Doe  Doctor

In relational database theory, this operation is generally referred to as a join. The columns used to determine which rows should be combined during a join are called keys.

The following functions are provided to perform seven kinds of joins:

  • innerjoin: the output contains rows for values of the key that exist in all passed data frames.
  • leftjoin: the output contains rows for values of the key that exist in the first (left) argument, whether or not that value exists in the second (right) argument.
  • rightjoin: the output contains rows for values of the key that exist in the second (right) argument, whether or not that value exists in the first (left) argument.
  • outerjoin: the output contains rows for values of the key that exist in any of the passed data frames.
  • semijoin: Like an inner join, but output is restricted to columns from the first (left) argument.
  • antijoin: The output contains rows for values of the key that exist in the first (left) but not the second (right) argument. As with semijoin, output is restricted to columns from the first (left) argument.
  • crossjoin: The output is the cartesian product of rows from all passed data frames.

See the Wikipedia page on SQL joins for more information.

Here are examples of different kinds of join:

julia> jobs = DataFrame(ID=[20, 60], Job=["Lawyer", "Astronaut"])
2×2 DataFrame
 Row │ ID     Job
     │ Int64  String
─────┼──────────────────
   1 │    20  Lawyer
   2 │    60  Astronaut

julia> innerjoin(people, jobs, on = :ID)
1×3 DataFrame
 Row │ ID     Name      Job
     │ Int64  String    String
─────┼─────────────────────────
   1 │    20  John Doe  Lawyer

julia> leftjoin(people, jobs, on = :ID)
2×3 DataFrame
 Row │ ID     Name      Job
     │ Int64  String    String?
─────┼──────────────────────────
   1 │    20  John Doe  Lawyer
   2 │    40  Jane Doe  missing

julia> rightjoin(people, jobs, on = :ID)
2×3 DataFrame
 Row │ ID     Name      Job
     │ Int64  String?   String
─────┼────────────────────────────
   1 │    20  John Doe  Lawyer
   2 │    60  missing   Astronaut

julia> outerjoin(people, jobs, on = :ID)
3×3 DataFrame
 Row │ ID     Name      Job
     │ Int64  String?   String?
─────┼────────────────────────────
   1 │    20  John Doe  Lawyer
   2 │    40  Jane Doe  missing
   3 │    60  missing   Astronaut

julia> semijoin(people, jobs, on = :ID)
1×2 DataFrame
 Row │ ID     Name
     │ Int64  String
─────┼─────────────────
   1 │    20  John Doe

julia> antijoin(people, jobs, on = :ID)
1×2 DataFrame
 Row │ ID     Name
     │ Int64  String
─────┼─────────────────
   1 │    40  Jane Doe

Cross joins are the only kind of join that does not use a on key:

julia> crossjoin(people, jobs, makeunique = true)
4×4 DataFrame
 Row │ ID     Name      ID_1   Job
     │ Int64  String    Int64  String
─────┼───────────────────────────────────
   1 │    20  John Doe     20  Lawyer
   2 │    20  John Doe     60  Astronaut
   3 │    40  Jane Doe     20  Lawyer
   4 │    40  Jane Doe     60  Astronaut

In order to join data frames on keys which have different names in the left and right tables, you may pass left => right pairs as on argument:

julia> a = DataFrame(ID=[20, 40], Name=["John Doe", "Jane Doe"])
2×2 DataFrame
 Row │ ID     Name
     │ Int64  String
─────┼─────────────────
   1 │    20  John Doe
   2 │    40  Jane Doe

julia> b = DataFrame(IDNew=[20, 40], Job=["Lawyer", "Doctor"])
2×2 DataFrame
 Row │ IDNew  Job
     │ Int64  String
─────┼───────────────
   1 │    20  Lawyer
   2 │    40  Doctor

julia> innerjoin(a, b, on = :ID => :IDNew)
2×3 DataFrame
 Row │ ID     Name      Job
     │ Int64  String    String
─────┼─────────────────────────
   1 │    20  John Doe  Lawyer
   2 │    40  Jane Doe  Doctor

Here is another example with multiple columns:

julia> a = DataFrame(City=["Amsterdam", "London", "London", "New York", "New York"],
                     Job=["Lawyer", "Lawyer", "Lawyer", "Doctor", "Doctor"],
                     Category=[1, 2, 3, 4, 5])
5×3 DataFrame
 Row │ City       Job     Category
     │ String     String  Int64
─────┼─────────────────────────────
   1 │ Amsterdam  Lawyer         1
   2 │ London     Lawyer         2
   3 │ London     Lawyer         3
   4 │ New York   Doctor         4
   5 │ New York   Doctor         5

julia> b = DataFrame(Location=["Amsterdam", "London", "London", "New York", "New York"],
                     Work=["Lawyer", "Lawyer", "Lawyer", "Doctor", "Doctor"],
                     Name=["a", "b", "c", "d", "e"])
5×3 DataFrame
 Row │ Location   Work    Name
     │ String     String  String
─────┼───────────────────────────
   1 │ Amsterdam  Lawyer  a
   2 │ London     Lawyer  b
   3 │ London     Lawyer  c
   4 │ New York   Doctor  d
   5 │ New York   Doctor  e

julia> innerjoin(a, b, on = [:City => :Location, :Job => :Work])
9×4 DataFrame
 Row │ City       Job     Category  Name
     │ String     String  Int64     String
─────┼─────────────────────────────────────
   1 │ Amsterdam  Lawyer         1  a
   2 │ London     Lawyer         2  b
   3 │ London     Lawyer         3  b
   4 │ London     Lawyer         2  c
   5 │ London     Lawyer         3  c
   6 │ New York   Doctor         4  d
   7 │ New York   Doctor         5  d
   8 │ New York   Doctor         4  e
   9 │ New York   Doctor         5  e

Additionally, notice that in the last join rows 2 and 3 had the same values on on variables in both joined DataFrames. In such a situation innerjoin, outerjoin, leftjoin and rightjoin will produce all combinations of matching rows. In our example rows from 2 to 5 were created as a result. The same behavior can be observed for rows 4 and 5 in both joined DataFrames.

In order to check that columns passed as the on argument define unique keys (according to isequal) in each input data frame you can set the validate keyword argument to a two-element tuple or a pair of Bool values, with each element indicating whether to run check for the corresponding data frame. Here is an example for the join operation described above:

julia> innerjoin(a, b, on = [(:City => :Location), (:Job => :Work)], validate=(true, true))
ERROR: ArgumentError: Merge key(s) are not unique in both df1 and df2. df1 contains 2 duplicate keys: (City = "London", Job = "Lawyer") and (City = "New York", Job = "Doctor"). df2 contains 2 duplicate keys: (Location = "London", Work = "Lawyer") and (Location = "New York", Work = "Doctor").

Finally, using the source keyword argument you can add a column to the resulting data frame indicating whether the given row appeared only in the left, the right or both data frames. Here is an example:

julia> a = DataFrame(ID=[20, 40], Name=["John", "Jane"])
2×2 DataFrame
 Row │ ID     Name
     │ Int64  String
─────┼───────────────
   1 │    20  John
   2 │    40  Jane

julia> b = DataFrame(ID=[20, 60], Job=["Lawyer", "Doctor"])
2×2 DataFrame
 Row │ ID     Job
     │ Int64  String
─────┼───────────────
   1 │    20  Lawyer
   2 │    60  Doctor

julia> outerjoin(a, b, on=:ID, validate=(true, true), source=:source)
3×4 DataFrame
 Row │ ID     Name     Job      source
     │ Int64  String?  String?  String
─────┼─────────────────────────────────────
   1 │    20  John     Lawyer   both
   2 │    40  Jane     missing  left_only
   3 │    60  missing  Doctor   right_only

Note that this time we also used the validate keyword argument and it did not produce errors as the keys defined in both source data frames were unique.