Split-apply-combine

The Split-Apply-Combine Strategy

Many data analysis tasks involve splitting a data set into groups, applying some functions to each of the groups and then combining the results. A standardized framework for handling this sort of computation is described in the paper "The Split-Apply-Combine Strategy for Data Analysis", written by Hadley Wickham.

The DataFrames package supports the split-apply-combine strategy through the by function, which is a shorthand for groupby followed by map and/or combine. by takes in three arguments: (1) a DataFrame, (2) one or more columns to split the DataFrame on, and (3) a specification of one or more functions to apply to each subset of the DataFrame. This specification can be of the following forms:

  1. a col => function pair indicating that function should be called with the vector of values for column col, which can be a column name or index
  2. a cols => function pair indicating that function should be called with a named tuple holding columns cols, which can be a tuple or vector of names or indices
  3. several such pairs, either as positional arguments or as keyword arguments (mixing is not allowed), producing each a single separate column; keyword argument names are used as column names
  4. equivalently, a (named) tuple or vector of such pairs
  5. a function which will be called with a SubDataFrame corresponding to each group; this form should be avoided due to its poor performance

In all of these cases, the function can return either a single row or multiple rows, with a single or multiple columns:

The kind of return value and the number and names of columns must be the same for all groups.

As a special case, if multiple pairs or a tuple of vectors or pairs is passed (forms 3 and 4 above), each function is required to return a single value or vector, which will produce each a separate column.

The name for the resulting column can be chosen either by passing a named tuple of pairs, or by returning a named tuple or a data frame. If no name is provided, it is generated automatically. For functions taking a single column (first form), the input column name is concatenated with the function name: for standard functions like mean this will produce columns with names like SepalLength_mean; for anonymous functions like x -> sqrt(x)^e, the produced columns will be SepalLength_function. For functions taking multiple columns (second form), names are x1, x2, etc.

We show several examples of the by function applied to the iris dataset below:

julia> using DataFrames, CSV, Statistics

julia> iris = CSV.read(joinpath(dirname(pathof(DataFrames)), "../test/data/iris.csv"));

julia> first(iris, 6)
6×5 DataFrame
│ Row │ SepalLength │ SepalWidth │ PetalLength │ PetalWidth │ Species       │
│     │ Float64⍰    │ Float64⍰   │ Float64⍰    │ Float64⍰   │ Categorical…⍰ │
├─────┼─────────────┼────────────┼─────────────┼────────────┼───────────────┤
│ 1   │ 5.1         │ 3.5        │ 1.4         │ 0.2        │ setosa        │
│ 2   │ 4.9         │ 3.0        │ 1.4         │ 0.2        │ setosa        │
│ 3   │ 4.7         │ 3.2        │ 1.3         │ 0.2        │ setosa        │
│ 4   │ 4.6         │ 3.1        │ 1.5         │ 0.2        │ setosa        │
│ 5   │ 5.0         │ 3.6        │ 1.4         │ 0.2        │ setosa        │
│ 6   │ 5.4         │ 3.9        │ 1.7         │ 0.4        │ setosa        │

julia> last(iris, 6)
6×5 DataFrame
│ Row │ SepalLength │ SepalWidth │ PetalLength │ PetalWidth │ Species       │
│     │ Float64⍰    │ Float64⍰   │ Float64⍰    │ Float64⍰   │ Categorical…⍰ │
├─────┼─────────────┼────────────┼─────────────┼────────────┼───────────────┤
│ 1   │ 6.7         │ 3.3        │ 5.7         │ 2.5        │ virginica     │
│ 2   │ 6.7         │ 3.0        │ 5.2         │ 2.3        │ virginica     │
│ 3   │ 6.3         │ 2.5        │ 5.0         │ 1.9        │ virginica     │
│ 4   │ 6.5         │ 3.0        │ 5.2         │ 2.0        │ virginica     │
│ 5   │ 6.2         │ 3.4        │ 5.4         │ 2.3        │ virginica     │
│ 6   │ 5.9         │ 3.0        │ 5.1         │ 1.8        │ virginica     │

julia> by(iris, :Species, :PetalLength => mean)
3×2 DataFrame
│ Row │ Species    │ PetalLength_mean │
│     │ String⍰    │ Float64          │
├─────┼────────────┼──────────────────┤
│ 1   │ setosa     │ 1.462            │
│ 2   │ versicolor │ 4.26             │
│ 3   │ virginica  │ 5.552            │

julia> by(iris, :Species, N = :Species => length) # Chosen column is arbitrary
3×2 DataFrame
│ Row │ Species       │ N     │
│     │ Categorical…⍰ │ Int64 │
├─────┼───────────────┼───────┤
│ 1   │ setosa        │ 50    │
│ 2   │ versicolor    │ 50    │
│ 3   │ virginica     │ 50    │

julia> by(iris, :Species, N = :Species => length, mean = :PetalLength => mean) # Column for length is arbitrary
3×3 DataFrame
│ Row │ Species    │ N     │ mean    │
│     │ String⍰    │ Int64 │ Float64 │
├─────┼────────────┼───────┼─────────┤
│ 1   │ setosa     │ 50    │ 1.462   │
│ 2   │ versicolor │ 50    │ 4.26    │
│ 3   │ virginica  │ 50    │ 5.552   │

julia> by(iris, :Species, [:PetalLength, :SepalLength] =>
              x -> (a=mean(x.PetalLength)/mean(x.SepalLength), b=sum(x.PetalLength)))
3×3 DataFrame
│ Row │ Species    │ a        │ b       │
│     │ String⍰    │ Float64  │ Float64 │
├─────┼────────────┼──────────┼─────────┤
│ 1   │ setosa     │ 0.29205  │ 73.1    │
│ 2   │ versicolor │ 0.717655 │ 213.0   │
│ 3   │ virginica  │ 0.842744 │ 277.6   │

The by function also supports the do block form. However, as noted above, this form is slow and should therefore be avoided when performance matters.

julia> by(iris, :Species) do df
          (m = mean(df.PetalLength), s² = var(df.PetalLength))
       end
3×3 DataFrame
│ Row │ Species       │ m       │ s²        │
│     │ Categorical…⍰ │ Float64 │ Float64   │
├─────┼───────────────┼─────────┼───────────┤
│ 1   │ setosa        │ 1.462   │ 0.0301592 │
│ 2   │ versicolor    │ 4.26    │ 0.220816  │
│ 3   │ virginica     │ 5.552   │ 0.304588  │

A second approach to the Split-Apply-Combine strategy is implemented in the aggregate function, which also takes three arguments: (1) a DataFrame, (2) one or more columns to split the DataFrame on, and (3) one or more functions that are used to compute a summary of each subset of the DataFrame. Each function is applied to each column that was not used to split the DataFrame, creating new columns of the form $name_$function like with by (see above). We show several examples of the aggregate function applied to the iris dataset below:

julia> aggregate(iris, :Species, length)
3×5 DataFrame
│ Row │ Species       │ SepalLength_length │ SepalWidth_length │ PetalLength_length │ PetalWidth_length │
│     │ Categorical…⍰ │ Int64              │ Int64             │ Int64              │ Int64             │
├─────┼───────────────┼────────────────────┼───────────────────┼────────────────────┼───────────────────┤
│ 1   │ setosa        │ 50                 │ 50                │ 50                 │ 50                │
│ 2   │ versicolor    │ 50                 │ 50                │ 50                 │ 50                │
│ 3   │ virginica     │ 50                 │ 50                │ 50                 │ 50                │

julia> aggregate(iris, :Species, [sum, mean])
3×9 DataFrame. Omitted printing of 2 columns
│ Row │ Species       │ SepalLength_sum │ SepalWidth_sum │ PetalLength_sum │ PetalWidth_sum │ SepalLength_mean │ SepalWidth_mean │
│     │ Categorical…⍰ │ Float64         │ Float64        │ Float64         │ Float64        │ Float64          │ Float64         │
├─────┼───────────────┼─────────────────┼────────────────┼─────────────────┼────────────────┼──────────────────┼─────────────────┤
│ 1   │ setosa        │ 250.3           │ 171.4          │ 73.1            │ 12.3           │ 5.006            │ 3.428           │
│ 2   │ versicolor    │ 296.8           │ 138.5          │ 213.0           │ 66.3           │ 5.936            │ 2.77            │
│ 3   │ virginica     │ 329.4           │ 148.7          │ 277.6           │ 101.3          │ 6.588            │ 2.974           │

If you only want to split the data set into subsets, use the groupby function:

julia> for subdf in groupby(iris, :Species)
           println(size(subdf, 1))
       end
50
50
50