Functions
Base.filterBase.filter!Base.joinBase.mapBase.repeatBase.showBase.sortBase.sort!Base.unique!DataFrames.aggregateDataFrames.allowmissing!DataFrames.byDataFrames.colwiseDataFrames.combineDataFrames.completecasesDataFrames.deletecols!DataFrames.deleterows!DataFrames.disallowmissing!DataFrames.dropmissingDataFrames.dropmissing!DataFrames.eachcolDataFrames.eachrowDataFrames.eltypesDataFrames.groupbyDataFrames.insertcols!DataFrames.mapcolsDataFrames.meltDataFrames.meltdfDataFrames.names!DataFrames.nonuniqueDataFrames.permutecols!DataFrames.renameDataFrames.rename!DataFrames.stackDataFrames.stackdfDataFrames.unstackStatsBase.describe
Grouping, Joining, and Split-Apply-Combine
DataFrames.aggregate — Function.Split-apply-combine that applies a set of functions over columns of an AbstractDataFrame or GroupedDataFrame
aggregate(d::AbstractDataFrame, cols, fs)
aggregate(gd::GroupedDataFrame, fs)Arguments
d: an AbstractDataFramegd: a GroupedDataFramecols: a column indicator (Symbol, Int, Vector{Symbol}, etc.)fs: a function or vector of functions to be applied to vectors within groups; expects each argument to be a column vector
Each fs should return a value or vector. All returns must be the same length.
Returns
::DataFrame
Examples
using Statistics
df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = randn(8))
aggregate(df, :a, sum)
aggregate(df, :a, [sum, x->mean(skipmissing(x))])
aggregate(groupby(df, :a), [sum, x->mean(skipmissing(x))])DataFrames.by — Function.by(d::AbstractDataFrame, keys, cols => f...; sort::Bool = false)
by(d::AbstractDataFrame, keys; (colname = cols => f)..., sort::Bool = false)
by(d::AbstractDataFrame, keys, f; sort::Bool = false)
by(f, d::AbstractDataFrame, keys; sort::Bool = false)Split-apply-combine in one step: apply f to each grouping in d based on grouping columns keys, and return a DataFrame.
keys can be either a single column index, or a vector thereof.
If the last argument(s) consist(s) in one or more cols => f pair(s), or if colname = cols => f keyword arguments are provided, cols must be a column name or index, or a vector or tuple thereof, and f must be a callable. A pair or a (named) tuple of pairs can also be provided as the first or last argument. If cols is a single column index, f is called with a SubArray view into that column for each group; else, f is called with a named tuple holding SubArray views into these columns.
If the last argument is a callable f, it is passed a SubDataFrame view for each group, and the returned DataFrame then consists of the returned rows plus the grouping columns. Note that this second form is much slower than the first one due to type instability. A method is defined with f as the first argument, so do-block notation can be used.
f can return a single value, a row or multiple rows. The type of the returned value determines the shape of the resulting data frame:
- A single value gives a data frame with a single column and one row per group.
- A named tuple of single values or a
DataFrameRowgives a data frame with one column for each field and one row per group. - A vector gives a data frame with a single column and as many rows for each group as the length of the returned vector for that group.
- A data frame, a named tuple of vectors or a matrix gives a data frame with the same columns and as many rows for each group as the rows returned for that group.
As a special case, if multiple pairs are passed as last arguments, each function is required to return a single value or vector, which will produce each a separate column.
In all cases, the resulting data frame contains all the grouping columns in addition to those listed above. Column names are automatically generated when necessary: for functions operating on a single column and returning a single value or vector, the function name is appended to the input colummn name; for other functions, columns are called x1, x2 and so on. The resulting data frame will be sorted on keys if sort=true. Otherwise, ordering of rows is undefined.
Note that f must always return the same type of object for all groups, and (if a named tuple or data frame) with the same fields or columns. Due to type instability, returning a single value or a named tuple is dramatically faster than returning a data frame.
Optimized methods are used when standard summary functions (sum, prod, minimum, maximum, mean, var, std, first, last and length) are specified using the pair syntax (e.g.col => sum). When computing thesumormeanover floating point columns, results will be less accurate than the standard [sum](@ref) function (which uses pairwise summation). Usecol => x -> sum(x)` to avoid the optimized method and use the slower, more accurate one.
by(d, cols, f) is equivalent to combine(f, groupby(d, cols)) and to the less efficient combine(map(f, groupby(d, cols))).
Examples
julia> df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = 1:8);
julia> by(df, :a, :c => sum)
4×2 DataFrame
│ Row │ a │ c_sum │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 6 │
│ 2 │ 2 │ 8 │
│ 3 │ 3 │ 10 │
│ 4 │ 4 │ 12 │
julia> by(df, :a, d -> sum(d.c)) # Slower variant
4×2 DataFrame
│ Row │ a │ x1 │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 6 │
│ 2 │ 2 │ 8 │
│ 3 │ 3 │ 10 │
│ 4 │ 4 │ 12 │
julia> by(df, :a) do d # do syntax for the slower variant
sum(d.c)
end
4×2 DataFrame
│ Row │ a │ x1 │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 6 │
│ 2 │ 2 │ 8 │
│ 3 │ 3 │ 10 │
│ 4 │ 4 │ 12 │
julia> by(df, :a, :c => x -> 2 .* x)
8×2 DataFrame
│ Row │ a │ c_function │
│ │ Int64 │ Int64 │
├─────┼───────┼────────────┤
│ 1 │ 1 │ 2 │
│ 2 │ 1 │ 10 │
│ 3 │ 2 │ 4 │
│ 4 │ 2 │ 12 │
│ 5 │ 3 │ 6 │
│ 6 │ 3 │ 14 │
│ 7 │ 4 │ 8 │
│ 8 │ 4 │ 16 │
julia> by(df, :a, c_sum = :c => sum, c_sum2 = :c => x -> sum(x.^2))
4×3 DataFrame
│ Row │ a │ c_sum │ c_sum2 │
│ │ Int64 │ Int64 │ Int64 │
├─────┼───────┼───────┼────────┤
│ 1 │ 1 │ 6 │ 26 │
│ 2 │ 2 │ 8 │ 40 │
│ 3 │ 3 │ 10 │ 58 │
│ 4 │ 4 │ 12 │ 80 │
julia> by(df, :a, (:b, :c) => x -> (minb = minimum(x.b), sumc = sum(x.c)))
4×3 DataFrame
│ Row │ a │ minb │ sumc │
│ │ Int64 │ Int64 │ Int64 │
├─────┼───────┼───────┼───────┤
│ 1 │ 1 │ 2 │ 6 │
│ 2 │ 2 │ 1 │ 8 │
│ 3 │ 3 │ 2 │ 10 │
│ 4 │ 4 │ 1 │ 12 │DataFrames.colwise — Function.Apply a function to each column in an AbstractDataFrame or GroupedDataFrame
colwise(f, d)Arguments
f: a function or vector of functionsd: an AbstractDataFrame of GroupedDataFrame
Returns
- various, depending on the call
Examples
df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = randn(8))
colwise(sum, df)
colwise([sum, length], df)
colwise((minimum, maximum), df)
colwise(sum, groupby(df, :a))DataFrames.combine — Function.combine(gd::GroupedDataFrame)
combine(gd::GroupedDataFrame, cols => f...)
combine(gd::GroupedDataFrame; (colname = cols => f)...)
combine(gd::GroupedDataFrame, f)
combine(f, gd::GroupedDataFrame)Transform a GroupedDataFrame into a DataFrame.
If the last argument(s) consist(s) in one or more cols => f pair(s), or if colname = cols => f keyword arguments are provided, cols must be a column name or index, or a vector or tuple thereof, and f must be a callable. A pair or a (named) tuple of pairs can also be provided as the first or last argument. If cols is a single column index, f is called with a SubArray view into that column for each group; else, f is called with a named tuple holding SubArray views into these columns.
If the last argument is a callable f, it is passed a SubDataFrame view for each group, and the returned DataFrame then consists of the returned rows plus the grouping columns. Note that this second form is much slower than the first one due to type instability. A method is defined with f as the first argument, so do-block notation can be used.
f can return a single value, a row or multiple rows. The type of the returned value determines the shape of the resulting data frame:
- A single value gives a data frame with a single column and one row per group.
- A named tuple of single values or a
DataFrameRowgives a data frame with one column for each field and one row per group. - A vector gives a data frame with a single column and as many rows for each group as the length of the returned vector for that group.
- A data frame, a named tuple of vectors or a matrix gives a data frame with the same columns and as many rows for each group as the rows returned for that group.
As a special case, if a tuple or vector of pairs is passed as the first argument, each function is required to return a single value or vector, which will produce each a separate column.
In all cases, the resulting data frame contains all the grouping columns in addition to those listed above. Column names are automatically generated when necessary: for functions operating on a single column and returning a single value or vector, the function name is appended to the input column name; for other functions, columns are called x1, x2 and so on. The resulting data frame will be sorted if sort=true was passed to the groupby call from which gd was constructed. Otherwise, ordering of rows is undefined.
Note that f must always return the same type of object for all groups, and (if a named tuple or data frame) with the same fields or columns. Due to type instability, returning a single value or a named tuple is dramatically faster than returning a data frame.
Optimized methods are used when standard summary functions (sum, prod, minimum, maximum, mean, var, std, first, last and length) are specified using the pair syntax (e.g.col => sum). When computing thesumormeanover floating point columns, results will be less accurate than the standard [sum](@ref) function (which uses pairwise summation). Usecol => x -> sum(x)` to avoid the optimized method and use the slower, more accurate one.
Examples
julia> df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = 1:8);
julia> gd = groupby(df, :a);
julia> combine(gd, :c => sum)
4×2 DataFrame
│ Row │ a │ c_sum │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 6 │
│ 2 │ 2 │ 8 │
│ 3 │ 3 │ 10 │
│ 4 │ 4 │ 12 │
julia> combine(:c => sum, gd)
4×2 DataFrame
│ Row │ a │ c_sum │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 6 │
│ 2 │ 2 │ 8 │
│ 3 │ 3 │ 10 │
│ 4 │ 4 │ 12 │
julia> combine(df -> sum(df.c), gd) # Slower variant
4×2 DataFrame
│ Row │ a │ x1 │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 6 │
│ 2 │ 2 │ 8 │
│ 3 │ 3 │ 10 │
│ 4 │ 4 │ 12 │See by for more examples.
See also
by(f, df, cols) is a shorthand for combine(f, groupby(df, cols)).
map: combine(f, groupby(df, cols)) is a more efficient equivalent of combine(map(f, groupby(df, cols))).
DataFrames.groupby — Function.A view of an AbstractDataFrame split into row groups
groupby(d::AbstractDataFrame, cols; sort = false, skipmissing = false)
groupby(cols; sort = false, skipmissing = false)Arguments
d: an AbstractDataFrame to split (optional, see Returns)cols: data table columns to group bysort: whether to sort rows according to the values of the grouping columnscolsskipmissing: whether to skip rows withmissingvalues in one of the grouping columnscols
Returns
A GroupedDataFrame : a grouped view into d
Details
An iterator over a GroupedDataFrame returns a SubDataFrame view for each grouping into d. A GroupedDataFrame also supports indexing by groups, map (which applies a function to each group) and combine (which applies a function to each group and combines the result into a data frame).
See the following for additional split-apply-combine operations:
by: split-apply-combine using functionsaggregate: split-apply-combine; applies functions in the form of a cross productcolwise: apply a function to each column in anAbstractDataFrameorGroupedDataFramemap: apply a function to each group of aGroupedDataFrame(without combining)combine: combine aGroupedDataFrame, optionally applying a function to each group
Examples
df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = randn(8))
gd = groupby(df, :a)
gd[1]
last(gd)
vcat([g[:b] for g in gd]...)
for g in gd
println(g)
endBase.join — Function.join(df1, df2; on = Symbol[], kind = :inner, makeunique = false,
indicator = nothing, validate = (false, false))Join two DataFrame objects
Arguments
df1,df2: the two AbstractDataFrames to be joined
Keyword Arguments
on: A column, or vector of columns to join df1 and df2 on. If the column(s) that df1 and df2 will be joined on have different names, then the columns should be(left, right)tuples orleft => rightpairs, or a vector of such tuples or pairs.onis a required argument for all joins except forkind = :crosskind: the type of join, options include::inner: only include rows with keys that match in bothdf1anddf2, the default:outer: include all rows fromdf1anddf2:left: include all rows fromdf1:right: include all rows fromdf2:semi: return rows ofdf1that match with the keys indf2:anti: return rows ofdf1that do not match with the keys indf2:cross: a full Cartesian product of the key combinations; every row ofdf1is matched with every row ofdf2
makeunique: iffalse(the default), an error will be raised if duplicate names are found in columns not joined on; iftrue, duplicate names will be suffixed with_i(istarting at 1 for the first duplicate).indicator: Default:nothing. If aSymbol, adds categorical indicator column namedSymbolfor whether a row appeared in onlydf1("left_only"), onlydf2("right_only") or in both ("both"). IfSymbolis already in use, the column name will be modified ifmakeunique=true.validate: whether to check that columns passed as theonargument define unique keys in each input data frame (according toisequal). Can be a tuple or a pair, with the first element indicating whether to run check fordf1and the second element fordf2. By default no check is performed.
For the three join operations that may introduce missing values (:outer, :left, and :right), all columns of the returned data table will support missing values.
When merging on categorical columns that differ in the ordering of their levels, the ordering of the left DataFrame takes precedence over the ordering of the right DataFrame
Result
::DataFrame: the joined DataFrame
Examples
name = DataFrame(ID = [1, 2, 3], Name = ["John Doe", "Jane Doe", "Joe Blogs"])
job = DataFrame(ID = [1, 2, 4], Job = ["Lawyer", "Doctor", "Farmer"])
join(name, job, on = :ID)
join(name, job, on = :ID, kind = :outer)
join(name, job, on = :ID, kind = :left)
join(name, job, on = :ID, kind = :right)
join(name, job, on = :ID, kind = :semi)
join(name, job, on = :ID, kind = :anti)
join(name, job, kind = :cross)
job2 = DataFrame(identifier = [1, 2, 4], Job = ["Lawyer", "Doctor", "Farmer"])
join(name, job2, on = (:ID, :identifier))
join(name, job2, on = :ID => :identifier)Base.map — Function.map(cols => f, gd::GroupedDataFrame)
map(f, gd::GroupedDataFrame)Apply a function to each group of rows and return a GroupedDataFrame.
If the first argument is a cols => f pair, cols must be a column name or index, or a vector or tuple thereof, and f must be a callable. If cols is a single column index, f is called with a SubArray view into that column for each group; else, f is called with a named tuple holding SubArray views into these columns.
If the first argument is a vector, tuple or named tuple of such pairs, each pair is handled as described above. If a named tuple, field names are used to name each generated column.
If the first argument is a callable, it is passed a SubDataFrame view for each group, and the returned DataFrame then consists of the returned rows plus the grouping columns. Note that this second form is much slower than the first one due to type instability.
f can return a single value, a row or multiple rows. The type of the returned value determines the shape of the resulting data frame:
- A single value gives a data frame with a single column and one row per group.
- A named tuple of single values or a
DataFrameRowgives a data frame with one column for each field and one row per group. - A vector gives a data frame with a single column and as many rows for each group as the length of the returned vector for that group.
- A data frame, a named tuple of vectors or a matrix gives a data frame with the same columns and as many rows for each group as the rows returned for that group.
As a special case, if a tuple or vector of pairs is passed as the first argument, each function is required to return a single value or vector, which will produce each a separate column.
In all cases, the resulting GroupedDataFrame contains all the grouping columns in addition to those listed above. Column names are automatically generated when necessary: for functions operating on a single column and returning a single value or vector, the function name is appended to the input column name; for other functions, columns are called x1, x2 and so on.
Note that f must always return the same type of object for all groups, and (if a named tuple or data frame) with the same fields or columns. Due to type instability, returning a single value or a named tuple is dramatically faster than returning a data frame.
Optimized methods are used when standard summary functions (sum, prod, minimum, maximum, mean, var, std, first, last and length) are specified using the pair syntax (e.g.col => sum). When computing thesumormeanover floating point columns, results will be less accurate than the standard [sum](@ref) function (which uses pairwise summation). Usecol => x -> sum(x)` to avoid the optimized method and use the slower, more accurate one.
Examples
julia> df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = 1:8);
julia> gd = groupby(df, :a);
julia> map(:c => sum, gd)
GroupedDataFrame{DataFrame} with 4 groups based on key: :a
First Group: 1 row
│ Row │ a │ c_sum │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 6 │
⋮
Last Group: 1 row
│ Row │ a │ c_sum │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 4 │ 12 │
julia> map(df -> sum(df.c), gd) # Slower variant
GroupedDataFrame{DataFrame} with 4 groups based on key: :a
First Group: 1 row
│ Row │ a │ x1 │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 6 │
⋮
Last Group: 1 row
│ Row │ a │ x1 │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 4 │ 12 │See by for more examples.
See also
combine(f, gd) returns a DataFrame rather than a GroupedDataFrame
DataFrames.melt — Function.Stacks a DataFrame; convert from a wide to long format; see stack.
DataFrames.stack — Function.Stacks a DataFrame; convert from a wide to long format
stack(df::AbstractDataFrame, [measure_vars], [id_vars];
variable_name::Symbol=:variable, value_name::Symbol=:value)
melt(df::AbstractDataFrame, [id_vars], [measure_vars];
variable_name::Symbol=:variable, value_name::Symbol=:value)Arguments
df: the AbstractDataFrame to be stackedmeasure_vars: the columns to be stacked (the measurement variables), a normal column indexing type, like a Symbol, Vector{Symbol}, Int, etc.; formelt, defaults to all variables that are notid_vars. If neithermeasure_varsorid_varsare given,measure_varsdefaults to all floating point columns.id_vars: the identifier columns that are repeated during stacking, a normal column indexing type; forstackdefaults to all variables that are notmeasure_varsvariable_name: the name of the new stacked column that shall hold the names of each ofmeasure_varsvalue_name: the name of the new stacked column containing the values from each ofmeasure_vars
Result
::DataFrame: the long-format DataFrame with column:valueholding the values of the stacked columns (measure_vars), with column:variablea Vector of Symbols with themeasure_varsname, and with columns for each of theid_vars.
See also stackdf and meltdf for stacking methods that return a view into the original DataFrame. See unstack for converting from long to wide format.
Examples
d1 = DataFrame(a = repeat([1:3;], inner = [4]),
b = repeat([1:4;], inner = [3]),
c = randn(12),
d = randn(12),
e = map(string, 'a':'l'))
d1s = stack(d1, [:c, :d])
d1s2 = stack(d1, [:c, :d], [:a])
d1m = melt(d1, [:a, :b, :e])
d1s_name = melt(d1, [:a, :b, :e], variable_name=:somemeasure)DataFrames.unstack — Function.Unstacks a DataFrame; convert from a long to wide format
unstack(df::AbstractDataFrame, rowkeys::Union{Symbol, Integer},
colkey::Union{Symbol, Integer}, value::Union{Symbol, Integer})
unstack(df::AbstractDataFrame, rowkeys::AbstractVector{<:Union{Symbol, Integer}},
colkey::Union{Symbol, Integer}, value::Union{Symbol, Integer})
unstack(df::AbstractDataFrame, colkey::Union{Symbol, Integer},
value::Union{Symbol, Integer})
unstack(df::AbstractDataFrame)Arguments
df: the AbstractDataFrame to be unstackedrowkeys: the column(s) with a unique key for each row, if not given, find a key by grouping on anything not acolkeyorvaluecolkey: the column holding the column names in wide format, defaults to:variablevalue: the value column, defaults to:value
Result
::DataFrame: the wide-format DataFrame
If colkey contains missing values then they will be skipped and a warning will be printed.
If combination of rowkeys and colkey contains duplicate entries then last value will be retained and a warning will be printed.
Examples
wide = DataFrame(id = 1:12,
a = repeat([1:3;], inner = [4]),
b = repeat([1:4;], inner = [3]),
c = randn(12),
d = randn(12))
long = stack(wide)
wide0 = unstack(long)
wide1 = unstack(long, :variable, :value)
wide2 = unstack(long, :id, :variable, :value)
wide3 = unstack(long, [:id, :a], :variable, :value)Note that there are some differences between the widened results above.
DataFrames.stackdf — Function.A stacked view of a DataFrame (long format)
Like stack and melt, but a view is returned rather than data copies.
stackdf(df::AbstractDataFrame, [measure_vars], [id_vars];
variable_name::Symbol=:variable, value_name::Symbol=:value)
meltdf(df::AbstractDataFrame, [id_vars], [measure_vars];
variable_name::Symbol=:variable, value_name::Symbol=:value)Arguments
df: the wide AbstractDataFramemeasure_vars: the columns to be stacked (the measurement variables), a normal column indexing type, like a Symbol, Vector{Symbol}, Int, etc.; formelt, defaults to all variables that are notid_varsid_vars: the identifier columns that are repeated during stacking, a normal column indexing type; forstackdefaults to all variables that are notmeasure_vars
Result
::DataFrame: the long-format DataFrame with column:valueholding the values of the stacked columns (measure_vars), with column:variablea Vector of Symbols with themeasure_varsname, and with columns for each of theid_vars.
The result is a view because the columns are special AbstractVectors that return indexed views into the original DataFrame.
Examples
d1 = DataFrame(a = repeat([1:3;], inner = [4]),
b = repeat([1:4;], inner = [3]),
c = randn(12),
d = randn(12),
e = map(string, 'a':'l'))
d1s = stackdf(d1, [:c, :d])
d1s2 = stackdf(d1, [:c, :d], [:a])
d1m = meltdf(d1, [:a, :b, :e])DataFrames.meltdf — Function.A stacked view of a DataFrame (long format); see stackdf
Basics
DataFrames.allowmissing! — Function.allowmissing!(df::DataFrame)Convert all columns of a df from element type T to Union{T, Missing} to support missing values.
allowmissing!(df::DataFrame, col::Union{Integer, Symbol})Convert a single column of a df from element type T to Union{T, Missing} to support missing values.
allowmissing!(df::DataFrame, cols::AbstractVector{<:Union{Integer, Symbol}})Convert multiple columns of a df from element type T to Union{T, Missing} to support missing values.
DataFrames.completecases — Function.completecases(df::AbstractDataFrame)
completecases(df::AbstractDataFrame, cols::AbstractVector)
completecases(df::AbstractDataFrame, cols::Union{Integer, Symbol})Return a Boolean vector with true entries indicating rows without missing values (complete cases) in data frame df. If cols is provided, only missing values in the corresponding columns are considered.
See also: dropmissing and dropmissing!. Use findall(completecases(df)) to get the indices of the rows.
Examples
julia> df = DataFrame(i = 1:5,
x = [missing, 4, missing, 2, 1],
y = [missing, missing, "c", "d", "e"])
5×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼─────────┼─────────┤
│ 1 │ 1 │ missing │ missing │
│ 2 │ 2 │ 4 │ missing │
│ 3 │ 3 │ missing │ c │
│ 4 │ 4 │ 2 │ d │
│ 5 │ 5 │ 1 │ e │
julia> completecases(df)
5-element BitArray{1}:
false
false
false
true
true
julia> completecases(df, :x)
5-element BitArray{1}:
false
true
false
true
true
julia> completecases(df, [:x, :y])
5-element BitArray{1}:
false
false
false
true
trueDataFrames.deletecols! — Function.deletecols!(df::DataFrame, ind)Delete columns specified by ind from a DataFramedf in place and return it.
Argument ind can be any index that is allowed for column indexing of a DataFrame provided that the columns requested to be removed are unique.
Examples
julia> d = DataFrame(a=1:3, b=4:6)
3×2 DataFrame
│ Row │ a │ b │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 4 │
│ 2 │ 2 │ 5 │
│ 3 │ 3 │ 6 │
julia> deletecols!(d, 1)
3×1 DataFrame
│ Row │ b │
│ │ Int64 │
├─────┼───────┤
│ 1 │ 4 │
│ 2 │ 5 │
│ 3 │ 6 │DataFrames.deleterows! — Function.deleterows!(df::DataFrame, ind)Delete rows specified by ind from a DataFramedf in place and return it.
Internally deleteat! is called for all columns so ind must be: a vector of sorted and unique integers, a boolean vector or an integer.
Examples
julia> d = DataFrame(a=1:3, b=4:6)
3×2 DataFrame
│ Row │ a │ b │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 4 │
│ 2 │ 2 │ 5 │
│ 3 │ 3 │ 6 │
julia> deleterows!(d, 2)
2×2 DataFrame
│ Row │ a │ b │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 4 │
│ 2 │ 3 │ 6 │StatsBase.describe — Function.Report descriptive statistics for a data frame
describe(df::AbstractDataFrame; stats = [:mean, :min, :median, :max, :nmissing, :nunique, :eltype])Arguments
df: the AbstractDataFramestats::Union{Symbol,AbstractVector{Symbol}}: the summary statistics to report. If a vector, allowed fields are:mean,:std,:min,:q25,:median,:q75,:max,:eltype,:nunique,:first,:last, and:nmissing. If set to:all, all summary statistics are reported.
Result
- A
DataFramewhere each row represents a variable and each column a summary statistic.
Details
For Real columns, compute the mean, standard deviation, minimum, first quantile, median, third quantile, and maximum. If a column does not derive from Real, describe will attempt to calculate all statistics, using nothing as a fall-back in the case of an error.
When stats contains :nunique, describe will report the number of unique values in a column. If a column's base type derives from Real, :nunique will return nothings.
Missing values are filtered in the calculation of all statistics, however the column :nmissing will report the number of missing values of that variable. If the column does not allow missing values, nothing is returned. Consequently, nmissing = 0 indicates that the column allows missing values, but does not currently contain any.
Examples
df = DataFrame(i = 1:10, x = rand(10), y = rand(["a", "b", "c"], 10))
describe(df)
describe(df, stats = :all)
describe(df, stats = [:min, :max])DataFrames.disallowmissing! — Function.disallowmissing!(df::DataFrame)Convert all columns of a df from element type Union{T, Missing} to T to drop support for missing values.
disallowmissing!(df::DataFrame, col::Union{Integer, Symbol})Convert a single column of a df from element type Union{T, Missing} to T to drop support for missing values.
disallowmissing!(df::DataFrame, cols::AbstractVector{<:Union{Integer, Symbol}})Convert multiple columns of a df from element type Union{T, Missing} to T to drop support for missing values.
DataFrames.dropmissing — Function.dropmissing(df::AbstractDataFrame; disallowmissing::Bool=false)
dropmissing(df::AbstractDataFrame, cols::AbstractVector; disallowmissing::Bool=false)
dropmissing(df::AbstractDataFrame, cols::Union{Integer, Symbol}; disallowmissing::Bool=false)Return a copy of data frame df excluding rows with missing values. If cols is provided, only missing values in the corresponding columns are considered.
In the future disallowmissing will be true by default.
See also: completecases and dropmissing!.
Examples
julia> df = DataFrame(i = 1:5,
x = [missing, 4, missing, 2, 1],
y = [missing, missing, "c", "d", "e"])
5×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼─────────┼─────────┤
│ 1 │ 1 │ missing │ missing │
│ 2 │ 2 │ 4 │ missing │
│ 3 │ 3 │ missing │ c │
│ 4 │ 4 │ 2 │ d │
│ 5 │ 5 │ 1 │ e │
julia> dropmissing(df)
2×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼────────┼─────────┤
│ 1 │ 4 │ 2 │ d │
│ 2 │ 5 │ 1 │ e │
julia> dropmissing(df, disallowmissing=true)
2×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64 │ String │
├─────┼───────┼───────┼────────┤
│ 1 │ 4 │ 2 │ d │
│ 2 │ 5 │ 1 │ e │
julia> dropmissing(df, :x)
3×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼────────┼─────────┤
│ 1 │ 2 │ 4 │ missing │
│ 2 │ 4 │ 2 │ d │
│ 3 │ 5 │ 1 │ e │
julia> dropmissing(df, [:x, :y])
2×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼────────┼─────────┤
│ 1 │ 4 │ 2 │ d │
│ 2 │ 5 │ 1 │ e │DataFrames.dropmissing! — Function.dropmissing!(df::AbstractDataFrame; disallowmissing::Bool=false)
dropmissing!(df::AbstractDataFrame, cols::AbstractVector; disallowmissing::Bool=false)
dropmissing!(df::AbstractDataFrame, cols::Union{Integer, Symbol}; disallowmissing::Bool=false)Remove rows with missing values from data frame df and return it. If cols is provided, only missing values in the corresponding columns are considered.
In the future disallowmissing will be true by default.
See also: dropmissing and completecases.
Examples
julia> df = DataFrame(i = 1:5,
x = [missing, 4, missing, 2, 1],
y = [missing, missing, "c", "d", "e"])
5×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼─────────┼─────────┤
│ 1 │ 1 │ missing │ missing │
│ 2 │ 2 │ 4 │ missing │
│ 3 │ 3 │ missing │ c │
│ 4 │ 4 │ 2 │ d │
│ 5 │ 5 │ 1 │ e │
julia> df1 = copy(df);
julia> dropmissing!(df1);
julia> df1
2×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼────────┼─────────┤
│ 1 │ 4 │ 2 │ d │
│ 2 │ 5 │ 1 │ e │
julia> dropmissing!(df1, disallowmissing=true);
julia> df1
2×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64 │ String │
├─────┼───────┼───────┼────────┤
│ 1 │ 4 │ 2 │ d │
│ 2 │ 5 │ 1 │ e │
julia> df2 = copy(df);
julia> dropmissing!(df2, :x);
julia> df2
3×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼────────┼─────────┤
│ 1 │ 2 │ 4 │ missing │
│ 2 │ 4 │ 2 │ d │
│ 3 │ 5 │ 1 │ e │
julia> df3 = copy(df);
julia> dropmissing!(df3, [:x, :y]);
julia> df3
2×3 DataFrame
│ Row │ i │ x │ y │
│ │ Int64 │ Int64⍰ │ String⍰ │
├─────┼───────┼────────┼─────────┤
│ 1 │ 4 │ 2 │ d │
│ 2 │ 5 │ 1 │ e │DataFrames.eachrow — Function.eachrow(df::AbstractDataFrame)Return a DataFrameRows that iterates a data frame row by row, with each row represented as a DataFrameRow.
Examples
julia> df = DataFrame(x=1:4, y=11:14)
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 11 │
│ 2 │ 2 │ 12 │
│ 3 │ 3 │ 13 │
│ 4 │ 4 │ 14 │
julia> eachrow(df)
4-element DataFrameRows:
DataFrameRow (row 1)
x 1
y 11
DataFrameRow (row 2)
x 2
y 12
DataFrameRow (row 3)
x 3
y 13
DataFrameRow (row 4)
x 4
y 14
julia> copy.(eachrow(df))
4-element Array{NamedTuple{(:x, :y),Tuple{Int64,Int64}},1}:
(x = 1, y = 11)
(x = 2, y = 12)
(x = 3, y = 13)
(x = 4, y = 14)
julia> eachrow(view(df, [4,3], [2,1]))
2-element DataFrameRows:
DataFrameRow (row 4)
y 14
x 4
DataFrameRow (row 3)
y 13
x 3DataFrames.eachcol — Function.eachcol(df::AbstractDataFrame, names::Bool=true)Return a DataFrameColumns that iterates an AbstractDataFrame column by column. If names is equal to true (currently the default, in the future the default will be set to false) iteration returns a pair consisting of column name and column vector. If names is equal to false then column vectors are yielded.
Examples
julia> df = DataFrame(x=1:4, y=11:14)
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 11 │
│ 2 │ 2 │ 12 │
│ 3 │ 3 │ 13 │
│ 4 │ 4 │ 14 │
julia> collect(eachcol(df, true))
2-element Array{Pair{Symbol,AbstractArray{T,1} where T},1}:
:x => [1, 2, 3, 4]
:y => [11, 12, 13, 14]
julia> collect(eachcol(df, false))
2-element Array{AbstractArray{T,1} where T,1}:
[1, 2, 3, 4]
[11, 12, 13, 14]
julia> sum.(eachcol(df, false))
2-element Array{Int64,1}:
10
50
julia> map(eachcol(df, false)) do col
maximum(col) - minimum(col)
end
2-element Array{Int64,1}:
3
3DataFrames.eltypes — Function.Return element types of columns
eltypes(df::AbstractDataFrame)Arguments
df: the AbstractDataFrame
Result
::Vector{Type}: the element type of each column
Examples
df = DataFrame(i = 1:10, x = rand(10), y = rand(["a", "b", "c"], 10))
eltypes(df)Base.filter — Function.filter(function, df::AbstractDataFrame)Return a copy of data frame df containing only rows for which function returns true. The function is passed a DataFrameRow as its only argument.
Examples
julia> df = DataFrame(x = [3, 1, 2, 1], y = ["b", "c", "a", "b"])
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 3 │ b │
│ 2 │ 1 │ c │
│ 3 │ 2 │ a │
│ 4 │ 1 │ b │
julia> filter(row -> row[:x] > 1, df)
2×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 3 │ b │
│ 2 │ 2 │ a │Base.filter! — Function.filter!(function, df::AbstractDataFrame)Remove rows from data frame df for which function returns false. The function is passed a DataFrameRow as its only argument.
Examples
julia> df = DataFrame(x = [3, 1, 2, 1], y = ["b", "c", "a", "b"])
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 3 │ b │
│ 2 │ 1 │ c │
│ 3 │ 2 │ a │
│ 4 │ 1 │ b │
julia> filter!(row -> row[:x] > 1, df);
julia> df
2×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 3 │ b │
│ 2 │ 2 │ a │DataFrames.insertcols! — Function.Insert a column into a data frame in place.
insertcols!(df::DataFrame, ind::Int; name=col,
makeunique::Bool=false)
insertcols!(df::DataFrame, ind::Int, (:name => col)::Pair{Symbol,<:AbstractVector};
makeunique::Bool=false)Arguments
df: the DataFrame to which we want to add a columnind: a position at which we want to insert a columnname: the name of the new columncol: anAbstractVectorgiving the contents of the new columnmakeunique: Defines what to do ifnamealready exists indf; if it isfalsean error will be thrown; if it istruea new unique name will be generated by adding a suffix
Result
::DataFrame: aDataFramewith added column.
Examples
julia> d = DataFrame(a=1:3)
3×1 DataFrame
│ Row │ a │
│ │ Int64 │
├─────┼───────┤
│ 1 │ 1 │
│ 2 │ 2 │
│ 3 │ 3 │
julia> insertcols!(d, 1, b=['a', 'b', 'c'])
3×2 DataFrame
│ Row │ b │ a │
│ │ Char │ Int64 │
├─────┼──────┼───────┤
│ 1 │ 'a' │ 1 │
│ 2 │ 'b' │ 2 │
│ 3 │ 'c' │ 3 │
julia> insertcols!(d, 1, :c => [2, 3, 4])
3×3 DataFrame
│ Row │ c │ b │ a │
│ │ Int64 │ Char │ Int64 │
├─────┼───────┼──────┼───────┤
│ 1 │ 2 │ 'a' │ 1 │
│ 2 │ 3 │ 'b' │ 2 │
│ 3 │ 4 │ 'c' │ 3 │DataFrames.mapcols — Function.mapcols(f::Union{Function,Type}, df::AbstractDataFrame)Return a DataFrame where each column of df is transformed using function f. f must return AbstractVector objects all with the same length or scalars.
Examples
julia> df = DataFrame(x=1:4, y=11:14)
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 11 │
│ 2 │ 2 │ 12 │
│ 3 │ 3 │ 13 │
│ 4 │ 4 │ 14 │
julia> mapcols(x -> x.^2, df)
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 121 │
│ 2 │ 4 │ 144 │
│ 3 │ 9 │ 169 │
│ 4 │ 16 │ 196 │DataFrames.names! — Function.Set column names
names!(df::AbstractDataFrame, vals)Arguments
df: the AbstractDataFramevals: column names, normally a Vector{Symbol} the same length as the number of columns indfmakeunique: iffalse(the default), an error will be raised if duplicate names are found; iftrue, duplicate names will be suffixed with_i(istarting at 1 for the first duplicate).
Result
::AbstractDataFrame: the updated result
Examples
df = DataFrame(i = 1:10, x = rand(10), y = rand(["a", "b", "c"], 10))
names!(df, [:a, :b, :c])
names!(df, [:a, :b, :a]) # throws ArgumentError
names!(df, [:a, :b, :a], makeunique=true) # renames second :a to :a_1DataFrames.nonunique — Function.Indexes of duplicate rows (a row that is a duplicate of a prior row)
nonunique(df::AbstractDataFrame)
nonunique(df::AbstractDataFrame, cols)Arguments
df: the AbstractDataFramecols: a column indicator (Symbol, Int, Vector{Symbol}, etc.) specifying the column(s) to compare
Result
::Vector{Bool}: indicates whether the row is a duplicate of some prior row
Examples
df = DataFrame(i = 1:10, x = rand(10), y = rand(["a", "b", "c"], 10))
df = vcat(df, df)
nonunique(df)
nonunique(df, 1)DataFrames.rename! — Function.Rename columns
rename!(df::AbstractDataFrame, (from => to)::Pair{Symbol, Symbol}...)
rename!(df::AbstractDataFrame, d::AbstractDict{Symbol,Symbol})
rename!(df::AbstractDataFrame, d::AbstractArray{Pair{Symbol,Symbol}})
rename!(f::Function, df::AbstractDataFrame)
rename(df::AbstractDataFrame, (from => to)::Pair{Symbol, Symbol}...)
rename(df::AbstractDataFrame, d::AbstractDict{Symbol,Symbol})
rename(df::AbstractDataFrame, d::AbstractArray{Pair{Symbol,Symbol}})
rename(f::Function, df::AbstractDataFrame)Arguments
df: the AbstractDataFramed: an Associative type or an AbstractArray of pairs that maps the original names to new namesf: a function which for each column takes the old name (a Symbol) and returns the new name (a Symbol)
Result
::AbstractDataFrame: the updated result
New names are processed sequentially. A new name must not already exist in the DataFrame at the moment an attempt to rename a column is performed.
Examples
df = DataFrame(i = 1:10, x = rand(10), y = rand(["a", "b", "c"], 10))
rename(df, :i => :A, :x => :X)
rename(df, [:i => :A, :x => :X])
rename(df, Dict(:i => :A, :x => :X))
rename(x -> Symbol(uppercase(string(x))), df)
rename(df) do x
Symbol(uppercase(string(x)))
end
rename!(df, Dict(:i =>: A, :x => :X))DataFrames.rename — Function.Rename columns
rename!(df::AbstractDataFrame, (from => to)::Pair{Symbol, Symbol}...)
rename!(df::AbstractDataFrame, d::AbstractDict{Symbol,Symbol})
rename!(df::AbstractDataFrame, d::AbstractArray{Pair{Symbol,Symbol}})
rename!(f::Function, df::AbstractDataFrame)
rename(df::AbstractDataFrame, (from => to)::Pair{Symbol, Symbol}...)
rename(df::AbstractDataFrame, d::AbstractDict{Symbol,Symbol})
rename(df::AbstractDataFrame, d::AbstractArray{Pair{Symbol,Symbol}})
rename(f::Function, df::AbstractDataFrame)Arguments
df: the AbstractDataFramed: an Associative type or an AbstractArray of pairs that maps the original names to new namesf: a function which for each column takes the old name (a Symbol) and returns the new name (a Symbol)
Result
::AbstractDataFrame: the updated result
New names are processed sequentially. A new name must not already exist in the DataFrame at the moment an attempt to rename a column is performed.
Examples
df = DataFrame(i = 1:10, x = rand(10), y = rand(["a", "b", "c"], 10))
rename(df, :i => :A, :x => :X)
rename(df, [:i => :A, :x => :X])
rename(df, Dict(:i => :A, :x => :X))
rename(x -> Symbol(uppercase(string(x))), df)
rename(df) do x
Symbol(uppercase(string(x)))
end
rename!(df, Dict(:i =>: A, :x => :X))Base.repeat — Function.repeat(df::AbstractDataFrame; inner::Integer = 1, outer::Integer = 1)Construct a data frame by repeating rows in df. inner specifies how many times each row is repeated, and outer specifies how many times the full set of rows is repeated.
Example
julia> df = DataFrame(a = 1:2, b = 3:4)
2×2 DataFrame
│ Row │ a │ b │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 3 │
│ 2 │ 2 │ 4 │
julia> repeat(df, inner = 2, outer = 3)
12×2 DataFrame
│ Row │ a │ b │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 3 │
│ 2 │ 1 │ 3 │
│ 3 │ 2 │ 4 │
│ 4 │ 2 │ 4 │
│ 5 │ 1 │ 3 │
│ 6 │ 1 │ 3 │
│ 7 │ 2 │ 4 │
│ 8 │ 2 │ 4 │
│ 9 │ 1 │ 3 │
│ 10 │ 1 │ 3 │
│ 11 │ 2 │ 4 │
│ 12 │ 2 │ 4 │repeat(df::AbstractDataFrame, count::Integer)Construct a data frame by repeating each row in df the number of times specified by count.
Example
julia> df = DataFrame(a = 1:2, b = 3:4)
2×2 DataFrame
│ Row │ a │ b │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 3 │
│ 2 │ 2 │ 4 │
julia> repeat(df, 2)
4×2 DataFrame
│ Row │ a │ b │
│ │ Int64 │ Int64 │
├─────┼───────┼───────┤
│ 1 │ 1 │ 3 │
│ 2 │ 2 │ 4 │
│ 3 │ 1 │ 3 │
│ 4 │ 2 │ 4 │Base.show — Function.show([io::IO,] df::AbstractDataFrame;
allrows::Bool = !get(io, :limit, false),
allcols::Bool = !get(io, :limit, false),
allgroups::Bool = !get(io, :limit, false),
splitcols::Bool = get(io, :limit, false),
rowlabel::Symbol = :Row,
summary::Bool = true)Render a data frame to an I/O stream. The specific visual representation chosen depends on the width of the display.
If io is omitted, the result is printed to stdout, and allrows, allcols and allgroups default to false while splitcols defaults to true.
Arguments
io::IO: The I/O stream to whichdfwill be printed.df::AbstractDataFrame: The data frame to print.allrows::Bool: Whether to print all rows, rather than a subset that fits the device height. By default this is the case only ifiodoes not have theIOContextpropertylimitset.allcols::Bool: Whether to print all columns, rather than a subset that fits the device width. By default this is the case only ifiodoes not have theIOContextpropertylimitset.allgroups::Bool: Whether to print all groups rather than the first and last, whendfis aGroupedDataFrame. By default this is the case only ifiodoes not have theIOContextpropertylimitset.splitcols::Bool: Whether to split printing in chunks of columns fitting the screen width rather than printing all columns in the same block. Only applies ifallcolsistrue. By default this is the case only ifiohas theIOContextpropertylimitset.rowlabel::Symbol = :Row: The label to use for the column containing row numbers.summary::Bool = true: Whether to print a brief string summary of the data frame.
Examples
julia> using DataFrames
julia> df = DataFrame(A = 1:3, B = ["x", "y", "z"]);
julia> show(df, allcols=true)
3×2 DataFrame
│ Row │ A │ B │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 1 │ x │
│ 2 │ 2 │ y │
│ 3 │ 3 │ z │Base.sort — Function.sort(df::AbstractDataFrame, cols;
alg::Union{Algorithm, Nothing}=nothing, lt=isless, by=identity,
rev::Bool=false, order::Ordering=Forward)Return a copy of data frame df sorted by column(s) cols. cols can be either a Symbol or Integer column index, or a tuple or vector of such indices.
If alg is nothing (the default), the most appropriate algorithm is chosen automatically among TimSort, MergeSort and RadixSort depending on the type of the sorting columns and on the number of rows in df. If rev is true, reverse sorting is performed. To enable reverse sorting only for some columns, pass order(c, rev=true) in cols, with c the corresponding column index (see example below). See sort! for a description of other keyword arguments.
Examples
julia> df = DataFrame(x = [3, 1, 2, 1], y = ["b", "c", "a", "b"])
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 3 │ b │
│ 2 │ 1 │ c │
│ 3 │ 2 │ a │
│ 4 │ 1 │ b │
julia> sort(df, :x)
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 1 │ c │
│ 2 │ 1 │ b │
│ 3 │ 2 │ a │
│ 4 │ 3 │ b │
julia> sort(df, (:x, :y))
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 1 │ b │
│ 2 │ 1 │ c │
│ 3 │ 2 │ a │
│ 4 │ 3 │ b │
julia> sort(df, (:x, :y), rev=true)
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 3 │ b │
│ 2 │ 2 │ a │
│ 3 │ 1 │ c │
│ 4 │ 1 │ b │
julia> sort(df, (:x, order(:y, rev=true)))
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 1 │ c │
│ 2 │ 1 │ b │
│ 3 │ 2 │ a │
│ 4 │ 3 │ b │Base.sort! — Function.sort!(df::AbstractDataFrame, cols;
alg::Union{Algorithm, Nothing}=nothing, lt=isless, by=identity,
rev::Bool=false, order::Ordering=Forward)Sort data frame df by column(s) cols. cols can be either a Symbol or Integer column index, or a tuple or vector of such indices.
If alg is nothing (the default), the most appropriate algorithm is chosen automatically among TimSort, MergeSort and RadixSort depending on the type of the sorting columns and on the number of rows in df. If rev is true, reverse sorting is performed. To enable reverse sorting only for some columns, pass order(c, rev=true) in cols, with c the corresponding column index (see example below). See other methods for a description of other keyword arguments.
Examples
julia> df = DataFrame(x = [3, 1, 2, 1], y = ["b", "c", "a", "b"])
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 3 │ b │
│ 2 │ 1 │ c │
│ 3 │ 2 │ a │
│ 4 │ 1 │ b │
julia> sort!(df, :x)
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 1 │ c │
│ 2 │ 1 │ b │
│ 3 │ 2 │ a │
│ 4 │ 3 │ b │
julia> sort!(df, (:x, :y))
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 1 │ b │
│ 2 │ 1 │ c │
│ 3 │ 2 │ a │
│ 4 │ 3 │ b │
julia> sort!(df, (:x, :y), rev=true)
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 3 │ b │
│ 2 │ 2 │ a │
│ 3 │ 1 │ c │
│ 4 │ 1 │ b │
julia> sort!(df, (:x, order(:y, rev=true)))
4×2 DataFrame
│ Row │ x │ y │
│ │ Int64 │ String │
├─────┼───────┼────────┤
│ 1 │ 1 │ c │
│ 2 │ 1 │ b │
│ 3 │ 2 │ a │
│ 4 │ 3 │ b │Base.unique! — Function.Delete duplicate rows
unique(df::AbstractDataFrame)
unique(df::AbstractDataFrame, cols)
unique!(df::AbstractDataFrame)
unique!(df::AbstractDataFrame, cols)Arguments
df: the AbstractDataFramecols: column indicator (Symbol, Int, Vector{Symbol}, etc.)
specifying the column(s) to compare.
Result
::AbstractDataFrame: the updated version ofdfwith unique rows.
When cols is specified, the return DataFrame contains complete rows, retaining in each case the first instance for which df[cols] is unique.
See also nonunique.
Examples
df = DataFrame(i = 1:10, x = rand(10), y = rand(["a", "b", "c"], 10))
df = vcat(df, df)
unique(df) # doesn't modify df
unique(df, 1)
unique!(df) # modifies dfDataFrames.permutecols! — Function.permutecols!(df::DataFrame, p::AbstractVector)Permute the columns of df in-place, according to permutation p. Elements of p may be either column indices (Int) or names (Symbol), but cannot be a combination of both. All columns must be listed.
Examples
julia> df = DataFrame(a=1:5, b=2:6, c=3:7)
5×3 DataFrame
│ Row │ a │ b │ c │
│ │ Int64 │ Int64 │ Int64 │
├─────┼───────┼───────┼───────┤
│ 1 │ 1 │ 2 │ 3 │
│ 2 │ 2 │ 3 │ 4 │
│ 3 │ 3 │ 4 │ 5 │
│ 4 │ 4 │ 5 │ 6 │
│ 5 │ 5 │ 6 │ 7 │
julia> permutecols!(df, [2, 1, 3]);
julia> df
5×3 DataFrame
│ Row │ b │ a │ c │
│ │ Int64 │ Int64 │ Int64 │
├─────┼───────┼───────┼───────┤
│ 1 │ 2 │ 1 │ 3 │
│ 2 │ 3 │ 2 │ 4 │
│ 3 │ 4 │ 3 │ 5 │
│ 4 │ 5 │ 4 │ 6 │
│ 5 │ 6 │ 5 │ 7 │
julia> permutecols!(df, [:c, :a, :b]);
julia> df
5×3 DataFrame
│ Row │ c │ a │ b │
│ │ Int64 │ Int64 │ Int64 │
├─────┼───────┼───────┼───────┤
│ 1 │ 3 │ 1 │ 2 │
│ 2 │ 4 │ 2 │ 3 │
│ 3 │ 5 │ 3 │ 4 │
│ 4 │ 6 │ 4 │ 5 │
│ 5 │ 7 │ 5 │ 6 │