Reshaping and Pivoting Data
Reshape data from wide to long format using the stack
function:
julia> using DataFrames, CSV
julia> iris = CSV.read(joinpath(dirname(pathof(DataFrames)), "../test/data/iris.csv"));
julia> head(iris)
6×5 DataFrame
│ Row │ SepalLength │ SepalWidth │ PetalLength │ PetalWidth │ Species │
│ │ Float64⍰ │ Float64⍰ │ Float64⍰ │ Float64⍰ │ Categorical…⍰ │
├─────┼─────────────┼────────────┼─────────────┼────────────┼───────────────┤
│ 1 │ 5.1 │ 3.5 │ 1.4 │ 0.2 │ setosa │
│ 2 │ 4.9 │ 3.0 │ 1.4 │ 0.2 │ setosa │
│ 3 │ 4.7 │ 3.2 │ 1.3 │ 0.2 │ setosa │
│ 4 │ 4.6 │ 3.1 │ 1.5 │ 0.2 │ setosa │
│ 5 │ 5.0 │ 3.6 │ 1.4 │ 0.2 │ setosa │
│ 6 │ 5.4 │ 3.9 │ 1.7 │ 0.4 │ setosa │
julia> tail(iris)
6×5 DataFrame
│ Row │ SepalLength │ SepalWidth │ PetalLength │ PetalWidth │ Species │
│ │ Float64⍰ │ Float64⍰ │ Float64⍰ │ Float64⍰ │ Categorical…⍰ │
├─────┼─────────────┼────────────┼─────────────┼────────────┼───────────────┤
│ 1 │ 6.7 │ 3.3 │ 5.7 │ 2.5 │ virginica │
│ 2 │ 6.7 │ 3.0 │ 5.2 │ 2.3 │ virginica │
│ 3 │ 6.3 │ 2.5 │ 5.0 │ 1.9 │ virginica │
│ 4 │ 6.5 │ 3.0 │ 5.2 │ 2.0 │ virginica │
│ 5 │ 6.2 │ 3.4 │ 5.4 │ 2.3 │ virginica │
│ 6 │ 5.9 │ 3.0 │ 5.1 │ 1.8 │ virginica │
julia> d = stack(iris, 1:4);
julia> head(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼─────────────┼──────────┼───────────────┤
│ 1 │ SepalLength │ 5.1 │ setosa │
│ 2 │ SepalLength │ 4.9 │ setosa │
│ 3 │ SepalLength │ 4.7 │ setosa │
│ 4 │ SepalLength │ 4.6 │ setosa │
│ 5 │ SepalLength │ 5.0 │ setosa │
│ 6 │ SepalLength │ 5.4 │ setosa │
julia> tail(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼────────────┼──────────┼───────────────┤
│ 1 │ PetalWidth │ 2.5 │ virginica │
│ 2 │ PetalWidth │ 2.3 │ virginica │
│ 3 │ PetalWidth │ 1.9 │ virginica │
│ 4 │ PetalWidth │ 2.0 │ virginica │
│ 5 │ PetalWidth │ 2.3 │ virginica │
│ 6 │ PetalWidth │ 1.8 │ virginica │
The second optional argument to stack
indicates the columns to be stacked. These are normally referred to as the measured variables. Column names can also be given:
julia> d = stack(iris, [:SepalLength, :SepalWidth, :PetalLength, :PetalWidth]);
julia> head(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼─────────────┼──────────┼───────────────┤
│ 1 │ SepalLength │ 5.1 │ setosa │
│ 2 │ SepalLength │ 4.9 │ setosa │
│ 3 │ SepalLength │ 4.7 │ setosa │
│ 4 │ SepalLength │ 4.6 │ setosa │
│ 5 │ SepalLength │ 5.0 │ setosa │
│ 6 │ SepalLength │ 5.4 │ setosa │
julia> tail(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼────────────┼──────────┼───────────────┤
│ 1 │ PetalWidth │ 2.5 │ virginica │
│ 2 │ PetalWidth │ 2.3 │ virginica │
│ 3 │ PetalWidth │ 1.9 │ virginica │
│ 4 │ PetalWidth │ 2.0 │ virginica │
│ 5 │ PetalWidth │ 2.3 │ virginica │
│ 6 │ PetalWidth │ 1.8 │ virginica │
Note that all columns can be of different types. Type promotion follows the rules of vcat
.
The stacked DataFrame
that results includes all of the columns not specified to be stacked. These are repeated for each stacked column. These are normally refered to as identifier (id) columns. In addition to the id columns, two additional columns labeled :variable
and :values
contain the column identifier and the stacked columns.
A third optional argument to stack
represents the id columns that are repeated. This makes it easier to specify which variables you want included in the long format:
julia> d = stack(iris, [:SepalLength, :SepalWidth], :Species);
julia> head(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼─────────────┼──────────┼───────────────┤
│ 1 │ SepalLength │ 5.1 │ setosa │
│ 2 │ SepalLength │ 4.9 │ setosa │
│ 3 │ SepalLength │ 4.7 │ setosa │
│ 4 │ SepalLength │ 4.6 │ setosa │
│ 5 │ SepalLength │ 5.0 │ setosa │
│ 6 │ SepalLength │ 5.4 │ setosa │
julia> tail(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼────────────┼──────────┼───────────────┤
│ 1 │ SepalWidth │ 3.3 │ virginica │
│ 2 │ SepalWidth │ 3.0 │ virginica │
│ 3 │ SepalWidth │ 2.5 │ virginica │
│ 4 │ SepalWidth │ 3.0 │ virginica │
│ 5 │ SepalWidth │ 3.4 │ virginica │
│ 6 │ SepalWidth │ 3.0 │ virginica │
melt
is an alternative function to reshape from wide to long format. It is based on stack
, but it prefers specification of the id columns as:
julia> d = melt(iris, :Species);
julia> head(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼─────────────┼──────────┼───────────────┤
│ 1 │ SepalLength │ 5.1 │ setosa │
│ 2 │ SepalLength │ 4.9 │ setosa │
│ 3 │ SepalLength │ 4.7 │ setosa │
│ 4 │ SepalLength │ 4.6 │ setosa │
│ 5 │ SepalLength │ 5.0 │ setosa │
│ 6 │ SepalLength │ 5.4 │ setosa │
julia> tail(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼────────────┼──────────┼───────────────┤
│ 1 │ PetalWidth │ 2.5 │ virginica │
│ 2 │ PetalWidth │ 2.3 │ virginica │
│ 3 │ PetalWidth │ 1.9 │ virginica │
│ 4 │ PetalWidth │ 2.0 │ virginica │
│ 5 │ PetalWidth │ 2.3 │ virginica │
│ 6 │ PetalWidth │ 1.8 │ virginica │
unstack
converts from a long format to a wide format. The default is requires specifying which columns are an id variable, column variable names, and column values:
julia> iris[:id] = 1:size(iris, 1)
1:150
julia> longdf = melt(iris, [:Species, :id]);
julia> head(longdf)
6×4 DataFrame
│ Row │ variable │ value │ Species │ id │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │ Int64 │
├─────┼─────────────┼──────────┼───────────────┼───────┤
│ 1 │ SepalLength │ 5.1 │ setosa │ 1 │
│ 2 │ SepalLength │ 4.9 │ setosa │ 2 │
│ 3 │ SepalLength │ 4.7 │ setosa │ 3 │
│ 4 │ SepalLength │ 4.6 │ setosa │ 4 │
│ 5 │ SepalLength │ 5.0 │ setosa │ 5 │
│ 6 │ SepalLength │ 5.4 │ setosa │ 6 │
julia> tail(longdf)
6×4 DataFrame
│ Row │ variable │ value │ Species │ id │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │ Int64 │
├─────┼────────────┼──────────┼───────────────┼───────┤
│ 1 │ PetalWidth │ 2.5 │ virginica │ 145 │
│ 2 │ PetalWidth │ 2.3 │ virginica │ 146 │
│ 3 │ PetalWidth │ 1.9 │ virginica │ 147 │
│ 4 │ PetalWidth │ 2.0 │ virginica │ 148 │
│ 5 │ PetalWidth │ 2.3 │ virginica │ 149 │
│ 6 │ PetalWidth │ 1.8 │ virginica │ 150 │
julia> widedf = unstack(longdf, :id, :variable, :value);
julia> head(widedf)
6×5 DataFrame
│ Row │ id │ PetalLength │ PetalWidth │ SepalLength │ SepalWidth │
│ │ Int64 │ Float64⍰ │ Float64⍰ │ Float64⍰ │ Float64⍰ │
├─────┼───────┼─────────────┼────────────┼─────────────┼────────────┤
│ 1 │ 1 │ 1.4 │ 0.2 │ 5.1 │ 3.5 │
│ 2 │ 2 │ 1.4 │ 0.2 │ 4.9 │ 3.0 │
│ 3 │ 3 │ 1.3 │ 0.2 │ 4.7 │ 3.2 │
│ 4 │ 4 │ 1.5 │ 0.2 │ 4.6 │ 3.1 │
│ 5 │ 5 │ 1.4 │ 0.2 │ 5.0 │ 3.6 │
│ 6 │ 6 │ 1.7 │ 0.4 │ 5.4 │ 3.9 │
julia> tail(widedf)
6×5 DataFrame
│ Row │ id │ PetalLength │ PetalWidth │ SepalLength │ SepalWidth │
│ │ Int64 │ Float64⍰ │ Float64⍰ │ Float64⍰ │ Float64⍰ │
├─────┼───────┼─────────────┼────────────┼─────────────┼────────────┤
│ 1 │ 145 │ 5.7 │ 2.5 │ 6.7 │ 3.3 │
│ 2 │ 146 │ 5.2 │ 2.3 │ 6.7 │ 3.0 │
│ 3 │ 147 │ 5.0 │ 1.9 │ 6.3 │ 2.5 │
│ 4 │ 148 │ 5.2 │ 2.0 │ 6.5 │ 3.0 │
│ 5 │ 149 │ 5.4 │ 2.3 │ 6.2 │ 3.4 │
│ 6 │ 150 │ 5.1 │ 1.8 │ 5.9 │ 3.0 │
If the remaining columns are unique, you can skip the id variable and use:
julia> longdf = melt(iris, [:Species, :id]);
julia> head(longdf)
6×4 DataFrame
│ Row │ variable │ value │ Species │ id │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │ Int64 │
├─────┼─────────────┼──────────┼───────────────┼───────┤
│ 1 │ SepalLength │ 5.1 │ setosa │ 1 │
│ 2 │ SepalLength │ 4.9 │ setosa │ 2 │
│ 3 │ SepalLength │ 4.7 │ setosa │ 3 │
│ 4 │ SepalLength │ 4.6 │ setosa │ 4 │
│ 5 │ SepalLength │ 5.0 │ setosa │ 5 │
│ 6 │ SepalLength │ 5.4 │ setosa │ 6 │
julia> widedf = unstack(longdf, :variable, :value);
julia> head(widedf)
6×6 DataFrame
│ Row │ Species │ id │ PetalLength │ PetalWidth │ SepalLength │ SepalWidth │
│ │ Categorical…⍰ │ Int64 │ Float64⍰ │ Float64⍰ │ Float64⍰ │ Float64⍰ │
├─────┼───────────────┼───────┼─────────────┼────────────┼─────────────┼────────────┤
│ 1 │ setosa │ 1 │ 1.4 │ 0.2 │ 5.1 │ 3.5 │
│ 2 │ setosa │ 2 │ 1.4 │ 0.2 │ 4.9 │ 3.0 │
│ 3 │ setosa │ 3 │ 1.3 │ 0.2 │ 4.7 │ 3.2 │
│ 4 │ setosa │ 4 │ 1.5 │ 0.2 │ 4.6 │ 3.1 │
│ 5 │ setosa │ 5 │ 1.4 │ 0.2 │ 5.0 │ 3.6 │
│ 6 │ setosa │ 6 │ 1.7 │ 0.4 │ 5.4 │ 3.9 │
stackdf
and meltdf
are two additional functions that work like stack
and melt
, but they provide a view into the original wide DataFrame. Here is an example:
julia> d = stackdf(iris);
julia> head(d)
6×4 DataFrame
│ Row │ variable │ value │ Species │ id │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │ Int64 │
├─────┼─────────────┼──────────┼───────────────┼───────┤
│ 1 │ SepalLength │ 5.1 │ setosa │ 1 │
│ 2 │ SepalLength │ 4.9 │ setosa │ 2 │
│ 3 │ SepalLength │ 4.7 │ setosa │ 3 │
│ 4 │ SepalLength │ 4.6 │ setosa │ 4 │
│ 5 │ SepalLength │ 5.0 │ setosa │ 5 │
│ 6 │ SepalLength │ 5.4 │ setosa │ 6 │
julia> tail(d)
6×4 DataFrame
│ Row │ variable │ value │ Species │ id │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │ Int64 │
├─────┼────────────┼──────────┼───────────────┼───────┤
│ 1 │ PetalWidth │ 2.5 │ virginica │ 145 │
│ 2 │ PetalWidth │ 2.3 │ virginica │ 146 │
│ 3 │ PetalWidth │ 1.9 │ virginica │ 147 │
│ 4 │ PetalWidth │ 2.0 │ virginica │ 148 │
│ 5 │ PetalWidth │ 2.3 │ virginica │ 149 │
│ 6 │ PetalWidth │ 1.8 │ virginica │ 150 │
This saves memory. To create the view, several AbstractVectors are defined:
:variable
column – EachRepeatedVector
This repeats the variables N times where N is the number of rows of the original AbstractDataFrame.
:value
column – StackedVector
This is provides a view of the original columns stacked together.
Id columns – RepeatedVector
This repeats the original columns N times where N is the number of columns stacked.
None of these reshaping functions perform any aggregation. To do aggregation, use the split-apply-combine functions in combination with reshaping. Here is an example:
julia> d = melt(iris, :Species);
julia> head(d)
6×3 DataFrame
│ Row │ variable │ value │ Species │
│ │ Symbol │ Float64⍰ │ Categorical…⍰ │
├─────┼─────────────┼──────────┼───────────────┤
│ 1 │ SepalLength │ 5.1 │ setosa │
│ 2 │ SepalLength │ 4.9 │ setosa │
│ 3 │ SepalLength │ 4.7 │ setosa │
│ 4 │ SepalLength │ 4.6 │ setosa │
│ 5 │ SepalLength │ 5.0 │ setosa │
│ 6 │ SepalLength │ 5.4 │ setosa │
julia> x = by(d, [:variable, :Species], df -> DataFrame(vsum = mean(df[:value])));
julia> head(x)
6×3 DataFrame
│ Row │ variable │ Species │ vsum │
│ │ Symbol │ Categorical…⍰ │ Float64 │
├─────┼─────────────┼───────────────┼─────────┤
│ 1 │ SepalLength │ setosa │ 5.006 │
│ 2 │ SepalLength │ versicolor │ 5.936 │
│ 3 │ SepalLength │ virginica │ 6.588 │
│ 4 │ SepalWidth │ setosa │ 3.428 │
│ 5 │ SepalWidth │ versicolor │ 2.77 │
│ 6 │ SepalWidth │ virginica │ 2.974 │
julia> head(unstack(x, :Species, :vsum))
5×4 DataFrame
│ Row │ variable │ setosa │ versicolor │ virginica │
│ │ Symbol │ Float64⍰ │ Float64⍰ │ Float64⍰ │
├─────┼─────────────┼──────────┼────────────┼───────────┤
│ 1 │ PetalLength │ 1.462 │ 4.26 │ 5.552 │
│ 2 │ PetalWidth │ 0.246 │ 1.326 │ 2.026 │
│ 3 │ SepalLength │ 5.006 │ 5.936 │ 6.588 │
│ 4 │ SepalWidth │ 3.428 │ 2.77 │ 2.974 │
│ 5 │ id │ 25.5 │ 75.5 │ 125.5 │