Getting Started
Installation
The DataFrames package is available through the Julia package system and can be installed using the following commands:
using Pkg
Pkg.add("DataFrames")
Throughout the rest of this tutorial, we will assume that you have installed the DataFrames package and have already typed using DataFrames
to bring all of the relevant variables into your current namespace.
By default Jupyter Notebook will limit the number of rows and columns when displaying a data frame to roughly fit the screen size (like in the REPL).
You can override this behavior by changing the values of the ENV["COLUMNS"]
and ENV["LINES"]
variables to hold the maximum width and height of output in characters respectively.
Alternatively, you may want to set the maximum number of data frame rows to print to 100
and the maximum output width in characters to 1000
for every Julia session using some Jupyter kernel file (numbers 100
and 1000
are only examples and can be adjusted). In such case add a "COLUMNS": "1000", "LINES": "100"
entry to the "env"
variable in this Jupyter kernel file. See here for information about location and specification of Jupyter kernels.
The DataFrame
Type
Objects of the DataFrame
type represent a data table as a series of vectors, each corresponding to a column or variable. The simplest way of constructing a DataFrame
is to pass column vectors using keyword arguments or pairs:
julia> using DataFrames
julia> df = DataFrame(A = 1:4, B = ["M", "F", "F", "M"])
4×2 DataFrame
Row │ A B
│ Int64 String
─────┼───────────────
1 │ 1 M
2 │ 2 F
3 │ 3 F
4 │ 4 M
Columns can be directly (i.e. without copying) accessed via df.col
, df."col"
, df[!, :col]
or df[!, "col"]
. The two latter syntaxes are more flexible as they allow passing a variable holding the name of the column, and not only a literal name. Note that column names can be either symbols (written as :col
, :var"col"
or Symbol("col")
) or strings (written as "col"
). Note that in the forms df."col"
and :var"col"
variable interpolation into a string using $
does not work. Columns can also be accessed using an integer index specifying their position.
Since df[!, :col]
does not make a copy, changing the elements of the column vector returned by this syntax will affect the values stored in the original df
. To get a copy of the column use df[:, :col]
: changing the vector returned by this syntax does not change df
.
julia> df.A
4-element Array{Int64,1}:
1
2
3
4
julia> df."A"
4-element Array{Int64,1}:
1
2
3
4
julia> df.A === df[!, :A]
true
julia> df.A === df[:, :A]
false
julia> df.A == df[:, :A]
true
julia> df.A === df[!, "A"]
true
julia> df.A === df[:, "A"]
false
julia> df.A == df[:, "A"]
true
julia> df.A === df[!, 1]
true
julia> df.A === df[:, 1]
false
julia> df.A == df[:, 1]
true
julia> firstcolumn = :A
:A
julia> df[!, firstcolumn] === df.A
true
julia> df[:, firstcolumn] === df.A
false
julia> df[:, firstcolumn] == df.A
true
Column names can be obtained as strings using the names
function:
julia> names(df)
2-element Array{String,1}:
"A"
"B"
To get column names as Symbol
s use the propertynames
function:
julia> propertynames(df)
2-element Array{Symbol,1}:
:A
:B
DataFrames.jl allows to use Symbol
s (like :A
) and strings (like "A"
) for all column indexing operations for convenience. However, using Symbol
s is slightly faster and should generally be preferred, if not generating them via string manipulation.
Constructing Column by Column
It is also possible to start with an empty DataFrame
and add columns to it one by one:
julia> df = DataFrame()
0×0 DataFrame
julia> df.A = 1:8
1:8
julia> df.B = ["M", "F", "F", "M", "F", "M", "M", "F"]
8-element Array{String,1}:
"M"
"F"
"F"
"M"
"F"
"M"
"M"
"F"
julia> df
8×2 DataFrame
Row │ A B
│ Int64 String
─────┼───────────────
1 │ 1 M
2 │ 2 F
3 │ 3 F
4 │ 4 M
5 │ 5 F
6 │ 6 M
7 │ 7 M
8 │ 8 F
The DataFrame
we build in this way has 8 rows and 2 columns. This can be checked using the size
function:
julia> size(df, 1)
8
julia> size(df, 2)
2
julia> size(df)
(8, 2)
Constructing Row by Row
It is also possible to fill a DataFrame
row by row. Let us construct an empty data frame with two columns (note that the first column can only contain integers and the second one can only contain strings):
julia> df = DataFrame(A = Int[], B = String[])
0×2 DataFrame
Rows can then be added as tuples or vectors, where the order of elements matches that of columns:
julia> push!(df, (1, "M"))
1×2 DataFrame
Row │ A B
│ Int64 String
─────┼───────────────
1 │ 1 M
julia> push!(df, [2, "N"])
2×2 DataFrame
Row │ A B
│ Int64 String
─────┼───────────────
1 │ 1 M
2 │ 2 N
Rows can also be added as Dict
s, where the dictionary keys match the column names:
julia> push!(df, Dict(:B => "F", :A => 3))
3×2 DataFrame
Row │ A B
│ Int64 String
─────┼───────────────
1 │ 1 M
2 │ 2 N
3 │ 3 F
Note that constructing a DataFrame
row by row is significantly less performant than constructing it all at once, or column by column. For many use-cases this will not matter, but for very large DataFrame
s this may be a consideration.
Constructing from another table type
DataFrames supports the Tables.jl interface for interacting with tabular data. This means that a DataFrame
can be used as a "source" to any package that expects a Tables.jl interface input, (file format packages, data manipulation packages, etc.). A DataFrame
can also be a sink for any Tables.jl interface input. Some example uses are:
df = DataFrame(a=[1, 2, 3], b=[:a, :b, :c])
# write DataFrame out to CSV file
CSV.write("dataframe.csv", df)
# store DataFrame in an SQLite database table
SQLite.load!(df, db, "dataframe_table")
# transform a DataFrame through Query.jl package
df = df |> @map({a=_.a + 1, _.b}) |> DataFrame
A particular common case of a collection that supports the Tables.jl interface is a vector of NamedTuple
s:
julia> v = [(a=1, b=2), (a=3, b=4)]
2-element Array{NamedTuple{(:a, :b),Tuple{Int64,Int64}},1}:
(a = 1, b = 2)
(a = 3, b = 4)
julia> df = DataFrame(v)
2×2 DataFrame
Row │ a b
│ Int64 Int64
─────┼──────────────
1 │ 1 2
2 │ 3 4
You can also easily convert a data frame back to a vector of NamedTuple
s:
julia> using Tables
julia> Tables.rowtable(df)
2-element Array{NamedTuple{(:a, :b),Tuple{Int64,Int64}},1}:
(a = 1, b = 2)
(a = 3, b = 4)
Working with Data Frames
Examining the Data
The default printing of DataFrame
objects only includes a sample of rows and columns that fits on screen:
julia> df = DataFrame(A = 1:2:1000, B = repeat(1:10, inner=50), C = 1:500)
500×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 3 1 2
3 │ 5 1 3
4 │ 7 1 4
5 │ 9 1 5
6 │ 11 1 6
7 │ 13 1 7
⋮ │ ⋮ ⋮ ⋮
494 │ 987 10 494
495 │ 989 10 495
496 │ 991 10 496
497 │ 993 10 497
498 │ 995 10 498
499 │ 997 10 499
500 │ 999 10 500
486 rows omitted
Printing options can be adjusted by calling the show
function manually: show(df, allrows=true)
prints all rows even if they do not fit on screen and show(df, allcols=true)
does the same for columns.
The first
and last
functions can be used to look at the first and last rows of a data frame (respectively):
julia> first(df, 6)
6×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 3 1 2
3 │ 5 1 3
4 │ 7 1 4
5 │ 9 1 5
6 │ 11 1 6
julia> last(df, 6)
6×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 989 10 495
2 │ 991 10 496
3 │ 993 10 497
4 │ 995 10 498
5 │ 997 10 499
6 │ 999 10 500
Also notice that when DataFrame
is printed to the console or rendered in HTML (e.g. in Jupyter Notebook) you get an information about type of elements held in its columns. For example in this case:
julia> DataFrame(a = 1:2, b = [1.0, missing],
c = categorical('a':'b'), d = [1//2, missing])
2×4 DataFrame
Row │ a b c d
│ Int64 Float64? Cat… Rational…?
─────┼────────────────────────────────────
1 │ 1 1.0 a 1//2
2 │ 2 missing b missing
we can observe that:
- the first column
:a
can hold elements of typeInt64
; - the second column
:b
can holdFloat64
orMissing
, which is indicated by?
printed after the name of type; - the third column
:c
can hold categorical data; here we notice…
, which indicates that the actual name of the type was long and got truncated; - the type information in fourth column
:d
presents a situation where the name is both truncated and the type allowsMissing
.
Taking a Subset
Indexing syntax
Specific subsets of a data frame can be extracted using the indexing syntax, similar to matrices. In the Indexing section of the manual you can find all the details about the available options. Here we highlight the basic options.
The colon :
indicates that all items (rows or columns depending on its position) should be retained:
julia> df[1:3, :]
3×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 3 1 2
3 │ 5 1 3
julia> df[[1, 5, 10], :]
3×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 9 1 5
3 │ 19 1 10
julia> df[:, [:A, :B]]
500×2 DataFrame
Row │ A B
│ Int64 Int64
─────┼──────────────
1 │ 1 1
2 │ 3 1
3 │ 5 1
4 │ 7 1
5 │ 9 1
6 │ 11 1
7 │ 13 1
⋮ │ ⋮ ⋮
494 │ 987 10
495 │ 989 10
496 │ 991 10
497 │ 993 10
498 │ 995 10
499 │ 997 10
500 │ 999 10
486 rows omitted
julia> df[1:3, [:B, :A]]
3×2 DataFrame
Row │ B A
│ Int64 Int64
─────┼──────────────
1 │ 1 1
2 │ 1 3
3 │ 1 5
julia> df[[3, 1], [:C]]
2×1 DataFrame
Row │ C
│ Int64
─────┼───────
1 │ 3
2 │ 1
Do note that df[!, [:A]]
and df[:, [:A]]
return a DataFrame
object, while df[!, :A]
and df[:, :A]
return a vector:
julia> df[!, [:A]]
500×1 DataFrame
Row │ A
│ Int64
─────┼───────
1 │ 1
2 │ 3
3 │ 5
4 │ 7
5 │ 9
6 │ 11
7 │ 13
⋮ │ ⋮
494 │ 987
495 │ 989
496 │ 991
497 │ 993
498 │ 995
499 │ 997
500 │ 999
486 rows omitted
julia> df[!, [:A]] == df[:, [:A]]
true
julia> df[!, :A]
500-element Array{Int64,1}:
1
3
5
7
9
11
⋮
991
993
995
997
999
julia> df[!, :A] == df[:, :A]
true
In the first case, [:A]
is a vector, indicating that the resulting object should be a DataFrame
. On the other hand, :A
is a single symbol, indicating that a single column vector should be extracted. Note that in the first case a vector is required to be passed (not just any iterable), so e.g. df[:, (:x1, :x2)]
is not allowed, but df[:, [:x1, :x2]]
is valid.
It is also possible to use a regular expression as a selector of columns matching it:
julia> df = DataFrame(x1=1, x2=2, y=3)
1×3 DataFrame
Row │ x1 x2 y
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 2 3
julia> df[!, r"x"]
1×2 DataFrame
Row │ x1 x2
│ Int64 Int64
─────┼──────────────
1 │ 1 2
A Not
selector (from the InvertedIndices package) can be used to select all columns excluding a specific subset:
julia> df[!, Not(:x1)]
1×2 DataFrame
Row │ x2 y
│ Int64 Int64
─────┼──────────────
1 │ 2 3
Finally, you can use Not
, Between
, Cols
and All
selectors in more complex column selection scenarios (note that Cols()
selects no columns while All()
selects all columns therefore Cols
is a preferred selector if you write generic code). The following examples move all columns whose names match r"x"
regular expression respectively to the front and to the end of a data frame:
julia> df = DataFrame(r=1, x1=2, x2=3, y=4)
1×4 DataFrame
Row │ r x1 x2 y
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────
1 │ 1 2 3 4
julia> df[:, Cols(r"x", :)]
1×4 DataFrame
Row │ x1 x2 r y
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────
1 │ 2 3 1 4
julia> df[:, Cols(Not(r"x"), :)]
1×4 DataFrame
Row │ r y x1 x2
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────
1 │ 1 4 2 3
The indexing syntax can also be used to select rows based on conditions on variables:
julia> df = DataFrame(A = 1:2:1000, B = repeat(1:10, inner=50), C = 1:500)
500×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 3 1 2
3 │ 5 1 3
4 │ 7 1 4
5 │ 9 1 5
6 │ 11 1 6
7 │ 13 1 7
⋮ │ ⋮ ⋮ ⋮
494 │ 987 10 494
495 │ 989 10 495
496 │ 991 10 496
497 │ 993 10 497
498 │ 995 10 498
499 │ 997 10 499
500 │ 999 10 500
486 rows omitted
julia> df[df.A .> 500, :]
250×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 501 6 251
2 │ 503 6 252
3 │ 505 6 253
4 │ 507 6 254
5 │ 509 6 255
6 │ 511 6 256
7 │ 513 6 257
⋮ │ ⋮ ⋮ ⋮
244 │ 987 10 494
245 │ 989 10 495
246 │ 991 10 496
247 │ 993 10 497
248 │ 995 10 498
249 │ 997 10 499
250 │ 999 10 500
236 rows omitted
julia> df[(df.A .> 500) .& (300 .< df.C .< 400), :]
99×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 601 7 301
2 │ 603 7 302
3 │ 605 7 303
4 │ 607 7 304
5 │ 609 7 305
6 │ 611 7 306
7 │ 613 7 307
⋮ │ ⋮ ⋮ ⋮
93 │ 785 8 393
94 │ 787 8 394
95 │ 789 8 395
96 │ 791 8 396
97 │ 793 8 397
98 │ 795 8 398
99 │ 797 8 399
85 rows omitted
Where a specific subset of values needs to be matched, the in()
function can be applied:
julia> df[in.(df.A, Ref([1, 5, 601])), :]
3×3 DataFrame
Row │ A B C
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 1 1
2 │ 5 1 3
3 │ 601 7 301
Equivalently, the in
function can be called with a single argument to create a function object that tests whether each value belongs to the subset (partial application of in
): df[in([1, 5, 601]).(df.A), :]
.
As with matrices, subsetting from a data frame will usually return a copy of columns, not a view or direct reference.
The only indexing situations where data frames will not return a copy are:
- when a
!
is placed in the first indexing position (df[!, :A]
, ordf[!, [:A, :B]]
), - when using
.
(getpropery
) notation (df.A
), - when a single row is selected using an integer (
df[1, [:A, :B]]
) - when
view
or@view
is used (e.g.@view df[1:3, :A]
).
More details on copies, views, and references can be found in the getindex
and view
section.
Column selection using select
and select!
, transform
and transform!
You can also use the select
and select!
functions to select, rename and transform columns in a data frame.
The select
function creates a new data frame:
julia> df = DataFrame(x1=[1, 2], x2=[3, 4], y=[5, 6])
2×3 DataFrame
Row │ x1 x2 y
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 3 5
2 │ 2 4 6
julia> select(df, Not(:x1)) # drop column :x1 in a new data frame
2×2 DataFrame
Row │ x2 y
│ Int64 Int64
─────┼──────────────
1 │ 3 5
2 │ 4 6
julia> select(df, r"x") # select columns containing 'x' character
2×2 DataFrame
Row │ x1 x2
│ Int64 Int64
─────┼──────────────
1 │ 1 3
2 │ 2 4
julia> select(df, :x1 => :a1, :x2 => :a2) # rename columns
2×2 DataFrame
Row │ a1 a2
│ Int64 Int64
─────┼──────────────
1 │ 1 3
2 │ 2 4
julia> select(df, :x1, :x2 => (x -> x .- minimum(x)) => :x2) # transform columns
2×2 DataFrame
Row │ x1 x2
│ Int64 Int64
─────┼──────────────
1 │ 1 0
2 │ 2 1
julia> select(df, :x2, :x2 => ByRow(sqrt)) # transform columns by row
2×2 DataFrame
Row │ x2 x2_sqrt
│ Int64 Float64
─────┼────────────────
1 │ 3 1.73205
2 │ 4 2.0
julia> select(df, AsTable(:) => ByRow(extrema) => [:lo, :hi]) # return multiple columns
2×2 DataFrame
Row │ lo hi
│ Int64 Int64
─────┼──────────────
1 │ 1 5
2 │ 2 6
It is important to note that select
always returns a data frame, even if a single column is selected (as opposed to indexing syntax).
julia> select(df, :x1)
2×1 DataFrame
Row │ x1
│ Int64
─────┼───────
1 │ 1
2 │ 2
julia> df[:, :x1]
1-element Array{Int64,1}:
1
By default select
copies columns of a passed source data frame. In order to avoid copying, pass copycols=false
:
julia> df2 = select(df, :x1)
2×1 DataFrame
Row │ x1
│ Int64
─────┼───────
1 │ 1
2 │ 2
julia> df2.x1 === df.x1
false
julia> df2 = select(df, :x1, copycols=false)
2×1 DataFrame
Row │ x1
│ Int64
─────┼───────
1 │ 1
2 │ 2
julia> df2.x1 === df.x1
true
To perform the selection operation in-place use select!
:
julia> select!(df, Not(:x1));
julia> df
2×2 DataFrame
Row │ x2 y
│ Int64 Int64
─────┼──────────────
1 │ 3 5
2 │ 4 6
transform
and transform!
functions work identically to select
and select!
with the only difference that they retain all columns that are present in the source data frame. Here are some more advanced examples.
First we show how to generate a column that is a sum of all other columns in the data frame using the All()
selector:
julia> df = DataFrame(x1=[1, 2], x2=[3, 4], y=[5, 6])
2×3 DataFrame
Row │ x1 x2 y
│ Int64 Int64 Int64
─────┼─────────────────────
1 │ 1 3 5
2 │ 2 4 6
julia> transform(df, All() => +)
2×4 DataFrame
Row │ x1 x2 y x1_x2_y_+
│ Int64 Int64 Int64 Int64
─────┼────────────────────────────────
1 │ 1 3 5 9
2 │ 2 4 6 12
Using the ByRow
wrapper, we can easily compute for each row the name of column with the highest score:
julia> using Random
julia> Random.seed!(1);
julia> df = DataFrame(rand(10, 3), [:a, :b, :c])
10×3 DataFrame
Row │ a b c
│ Float64 Float64 Float64
─────┼──────────────────────────────────
1 │ 0.236033 0.555751 0.0769509
2 │ 0.346517 0.437108 0.640396
3 │ 0.312707 0.424718 0.873544
4 │ 0.00790928 0.773223 0.278582
5 │ 0.488613 0.28119 0.751313
6 │ 0.210968 0.209472 0.644883
7 │ 0.951916 0.251379 0.0778264
8 │ 0.999905 0.0203749 0.848185
9 │ 0.251662 0.287702 0.0856352
10 │ 0.986666 0.859512 0.553206
julia> transform(df, AsTable(:) => ByRow(argmax) => :prediction)
10×4 DataFrame
Row │ a b c prediction
│ Float64 Float64 Float64 Symbol
─────┼──────────────────────────────────────────────
1 │ 0.236033 0.555751 0.0769509 b
2 │ 0.346517 0.437108 0.640396 c
3 │ 0.312707 0.424718 0.873544 c
4 │ 0.00790928 0.773223 0.278582 b
5 │ 0.488613 0.28119 0.751313 c
6 │ 0.210968 0.209472 0.644883 c
7 │ 0.951916 0.251379 0.0778264 a
8 │ 0.999905 0.0203749 0.848185 a
9 │ 0.251662 0.287702 0.0856352 b
10 │ 0.986666 0.859512 0.553206 a
In the following, most complex, example below we compute row-wise sum, number of elements, and mean, while ignoring missing values.
julia> using Statistics
julia> df = DataFrame(x=[1, 2, missing], y=[1, missing, missing])
3×2 DataFrame
Row │ x y
│ Int64? Int64?
─────┼──────────────────
1 │ 1 1
2 │ 2 missing
3 │ missing missing
julia> transform(df, AsTable(:) .=>
ByRow.([sum∘skipmissing,
x -> count(!ismissing, x),
mean∘skipmissing]) .=>
[:sum, :n, :mean])
3×5 DataFrame
Row │ x y sum n mean
│ Int64? Int64? Int64 Int64 Float64
─────┼─────────────────────────────────────────
1 │ 1 1 2 2 1.0
2 │ 2 missing 2 1 2.0
3 │ missing missing 0 0 NaN
While the DataFrames.jl package provides basic data manipulation capabilities, users are encouraged to use querying frameworks for more convenient and powerful operations:
- the Query.jl package provides a
LINQ-like interface to a large number of data sources
package provides interfaces similar to LINQ and dplyr
See the Data manipulation frameworks section for more information.
Summarizing Data
The describe
function returns a data frame summarizing the elementary statistics and information about each column:
julia> df = DataFrame(A = 1:4, B = ["M", "F", "F", "M"])
4×2 DataFrame
Row │ A B
│ Int64 String
─────┼───────────────
1 │ 1 M
2 │ 2 F
3 │ 3 F
4 │ 4 M
julia> describe(df)
2×7 DataFrame
Row │ variable mean min median max nmissing eltype
│ Symbol Union… Any Union… Any Int64 DataType
─────┼────────────────────────────────────────────────────────
1 │ A 2.5 1 2.5 4 0 Int64
2 │ B F M 0 String
If you are interested in describing only a subset of columns then the easiest way to do it is to pass a subset of an original data frame to describe
like this:
julia> describe(df[!, [:A]])
1×7 DataFrame
Row │ variable mean min median max nmissing eltype
│ Symbol Float64 Int64 Float64 Int64 Int64 DataType
─────┼──────────────────────────────────────────────────────────────
1 │ A 2.5 1 2.5 4 0 Int64
Of course, one can also compute descriptive statistics directly on individual columns:
julia> using Statistics
julia> mean(df.A)
2.5
We can also apply a function to each column of a DataFrame
using combine
. For example:
julia> df = DataFrame(A = 1:4, B = 4.0:-1.0:1.0)
4×2 DataFrame
Row │ A B
│ Int64 Float64
─────┼────────────────
1 │ 1 4.0
2 │ 2 3.0
3 │ 3 2.0
4 │ 4 1.0
julia> combine(df, names(df) .=> sum)
1×2 DataFrame
Row │ A_sum B_sum
│ Int64 Float64
─────┼────────────────
1 │ 10 10.0
julia> combine(df, names(df) .=> sum, names(df) .=> prod)
1×4 DataFrame
Row │ A_sum B_sum A_prod B_prod
│ Int64 Float64 Int64 Float64
─────┼─────────────────────────────────
1 │ 10 10.0 24 24.0
If you would prefer the result to have the same number of rows as the source data frame use select
instead of combine
.
Handling of Columns Stored in a DataFrame
Functions that transform a DataFrame
to produce a new DataFrame
always perform a copy of the columns by default, for example:
julia> df = DataFrame(A = 1:4, B = 4.0:-1.0:1.0)
4×2 DataFrame
Row │ A B
│ Int64 Float64
─────┼────────────────
1 │ 1 4.0
2 │ 2 3.0
3 │ 3 2.0
4 │ 4 1.0
julia> df2 = copy(df);
julia> df2.A === df.A
false
On the other hand, in-place functions, whose names end with !
, may mutate the column vectors of the DataFrame
they take as an argument, for example:
julia> x = [3, 1, 2];
julia> df = DataFrame(x=x)
3×1 DataFrame
Row │ x
│ Int64
─────┼───────
1 │ 3
2 │ 1
3 │ 2
julia> sort!(df)
3×1 DataFrame
Row │ x
│ Int64
─────┼───────
1 │ 1
2 │ 2
3 │ 3
julia> x
3-element Array{Int64,1}:
3
1
2
julia> df.x[1] = 100
100
julia> df
3×1 DataFrame
Row │ x
│ Int64
─────┼───────
1 │ 100
2 │ 2
3 │ 3
julia> x
3-element Array{Int64,1}:
3
1
2
Note, that in the above example the original x
vector is not mutated in the process as the DataFrame(x=x)
constructor makes a copy by default.
In-place functions are safe to call, except when a view of the DataFrame
(created via a view
, @view
or groupby
) or when a DataFrame
created with copycols=false
are in use.
It is possible to have a direct access to a column col
of a DataFrame
df
using the syntaxes df.col
, df[!, :col]
, via the eachcol
function, by accessing a parent
of a view
of a column of a DataFrame
, or simply by storing the reference to the column vector before the DataFrame
was created with copycols=false
.
julia> x = [3, 1, 2];
julia> df = DataFrame(x=x)
3×1 DataFrame
Row │ x
│ Int64
─────┼───────
1 │ 3
2 │ 1
3 │ 2
julia> df.x == x
true
julia> df[1] !== x
true
julia> eachcol(df)[1] === df.x
true
Note that a column obtained from a DataFrame
using one of these methods should not be mutated without caution.
The exact rules of handling columns of a DataFrame
are explained in The design of handling of columns of a DataFrame
section of the manual.
Replacing Data
Several approaches can be used to replace some values with others in a data frame. Some apply the replacement to all values in a data frame, and others to individual columns or subset of columns.
Do note that in-place replacement requires that the replacement value can be converted to the column's element type. In particular, this implies that replacing a value with missing
requires a call to allowmissing!
if the column did not allow for missing values.
Replacement operations affecting a single column can be performed using replace!
:
julia> df = DataFrame(a = ["a", "None", "b", "None"], b = 1:4, c = ["None", "j", "k", "h"], d = ["x", "y", "None", "z"])
4×4 DataFrame
Row │ a b c d
│ String Int64 String String
─────┼───────────────────────────────
1 │ a 1 None x
2 │ None 2 j y
3 │ b 3 k None
4 │ None 4 h z
julia> replace!(df.a, "None" => "c")
4-element Array{String,1}:
"a"
"c"
"b"
"c"
julia> df
4×4 DataFrame
Row │ a b c d
│ String Int64 String String
─────┼───────────────────────────────
1 │ a 1 None x
2 │ c 2 j y
3 │ b 3 k None
4 │ c 4 h z
This is equivalent to df.a = replace(df.a, "None" => "c")
, but operates in-place, without allocating a new column vector.
Replacement operations on multiple columns or on the whole data frame can be performed in-place using the broadcasting syntax:
# replacement on a subset of columns [:c, :d]
julia> df[:, [:c, :d]] .= ifelse.(df[!, [:c, :d]] .== "None", "c", df[!, [:c, :d]])
4×2 SubDataFrame
Row │ c d
│ String String
─────┼────────────────
1 │ c x
2 │ j y
3 │ k c
4 │ h z
julia> df
4×4 DataFrame
Row │ a b c d
│ String Int64 String String
─────┼───────────────────────────────
1 │ a 1 c x
2 │ c 2 j y
3 │ b 3 k c
4 │ c 4 h z
julia> df .= ifelse.(df .== "c", "None", df) # replacement on entire data frame
4×4 DataFrame
Row │ a b c d
│ String Int64 String String
─────┼───────────────────────────────
1 │ a 1 None x
2 │ None 2 j y
3 │ b 3 k None
4 │ None 4 h z
Do note that in the above examples, changing .=
to just =
will allocate new column vectors instead of applying the operation in-place.
When replacing values with missing
, if the columns do not already allow for missing values, one has to either avoid in-place operation and use =
instead of .=
, or call allowmissing!
beforehand:
julia> df2 = ifelse.(df .== "None", missing, df) # do not operate in-place (`df = ` would also work)
4×4 DataFrame
Row │ a b c d
│ String? Int64 String? String?
─────┼──────────────────────────────────
1 │ a 1 missing x
2 │ missing 2 j y
3 │ b 3 k missing
4 │ missing 4 h z
julia> allowmissing!(df) # operate in-place after allowing for missing
4×4 DataFrame
Row │ a b c d
│ String? Int64? String? String?
─────┼───────────────────────────────────
1 │ a 1 None x
2 │ None 2 j y
3 │ b 3 k None
4 │ None 4 h z
julia> df .= ifelse.(df .== "None", missing, df)
4×4 DataFrame
Row │ a b c d
│ String? Int64? String? String?
─────┼───────────────────────────────────
1 │ a 1 missing x
2 │ missing 2 j y
3 │ b 3 k missing
4 │ missing 4 h z
Importing and Exporting Data (I/O)
For reading and writing tabular data from CSV and other delimited text files, use the CSV.jl package.
If you have not used the CSV.jl package before then you may need to install it first:
using Pkg
Pkg.add("CSV")
The CSV.jl functions are not loaded automatically and must be imported into the session.
using CSV
A dataset can now be read from a CSV file at path input
using
DataFrame(CSV.File(input))
A DataFrame
can be written to a CSV file at path output
using
df = DataFrame(x = 1, y = 2)
CSV.write(output, df)
The behavior of CSV functions can be adapted via keyword arguments. For more information, see ?CSV.File
, ?CSV.read
and ?CSV.write
, or checkout the online CSV.jl documentation.
For reading and writing tabular data in Apache Arrow format use Arrow.jl